“AD-A146 838 SUBJECTIVE AND OBJECTIVE EVFILURTION OF PITCH EXTRRL‘TORS 1/2
FO LPC AND HRRHO (U> BOLT BERANEK AND NEWMAN INC
RIDGE Hﬂ V VISHANATHAN ET AL. JUL 94 BBN 5726
UNCLASSIFIED DCRiOO 83-C

HEEGENEENEEREE




33 2=l
EEEF] 4__

h—gmwn—muu: -

IQO
—
t—
——
e ne——
e—

luI
e t—
e——
t———
e ——
e —

|
N
=

——— ———
———— e ——
S ——— —
—— e —

« v e~




R o Al

-

z:;
:
[
E
j
E
:
;

Report No. 5726

Subjective and Objective Evaluation of
Pitch Extractors for LPC and Harmonic

AD-A146 838

Deviations Vocoders

Final Report

July 1984

Prepared for:

Defense Communications Agency

This document has been approved
for public release and sale; its
distribution is unlimited.




BBN Report No. 5726

SUBJECTIVE AND OBJECTIVE EVALUATION OF PITCH EXTRACTORS
FOR LPC AND HARMONIC DEVIATIONS VOCODERS

Final Report
Contract No. DCA100-83-C-0023

Authors: V.R. Viswanathan and W.H. Rusgell

July 1984

Prepared by:

Bolt Beranek and Newman Inc.
10 Moulton Street
- Cambridge, MA 02238

Prepared for:

o Defense Communications Agency

= Defense Communications Engineering Center
1860 Wiehle Avenue

Reston, VA 22090

.
.

. -
O
o R
L at,
) o

. L

o
'

..............

e

~~~~~~~~~

%

L
PR

B
e'a’s
s

P
e

e T
L'

.

-

............




.........................................

UNCLASSIFIED
SECUMTY CLASSIFICATION OF THIS PAGE (When Dete Entored)
REPCRT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. NUM . GOVY ACCESHION NOJ 3. RECIPIENT'S CATALOG NUMBER
l BBN Report No. 5726
"o 8. TITLR (and Subitile) S. TYPE OF REPOARYT & PEMOD COVERED
SUBJECTIVE AND OBJECTIVE EVALUATION OF PITCH Final Report
EXTRACTORS FOR LPC AND HARMONIC DEVIATIONS Feb. 1983 - July 1984
o VOCODERS 6. PEAFORMING ORG. REFORT NUMBER
. ‘ BBN Regort No. 5726
. AYTHOR(e) . GONTRACY OR GRANT NUMBER(s)
8, Vishu R. Viswanathan and William H. Russell DCA100-83-C~0023
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. GRAM ELEMENT. PIOJ!C'I’ TASK 1

A & WORK UNIT NUMBEN :-_f,:y
Bolt Beranek and Newman Inc. e

10 Moulton Street RN |
11, CONTROLLING OFPICE NAME AND ADDRESS 12. NEPORT DATE ’ 1
Defense Communications Agency July 1984
Contract Management Division, Code 680 3. NUMBER OF PAGES
Washingtoni D.C. 20305 121
. MONMITORING AGENCY NAME & ADDRESK(I! dillerent from Centrelling Oflfice) 18. SECURITY CL ASS. (of thie report)
r -~

Unclassified - 4
Wﬁm S
SCHEDULE

[ CISTRIBUTION STATEMENT (of this Repert)
Distribution of this document is unlimited. It may be released to the N
Clearinghouse, Department of Commerce, for sale to the general public. d

17. DISTAIBUTION STATEMENT (of the abetract entered In Bleck 20, il diliorent irem Repeort) . :_

19. SUPPLEMENTARY NOTES

[ 19. KEY WOROS (Continue on reverse side il necoseary and Ideniily by Bioch mumber) .
;';'. Pitch extraction, pitch detector, voiced/unvoiced detection, pitch and ‘

voicing errors, subjective evluation of pitch extractors, objective Sy
evaluation of pitch extractors. 'f-,'j:-:

e
20. ABSTRACT (Continue en reverse side i necessary and idontily by bloch manber)

__/% This report describes the work performed on subjective and objective -'_j: e

evaluation of pitch extractors for use in 2.4 kbit/s LPC and harmonic
deviations(HDV) speech coders. From a review of the available pitch extrac-
tors, five algorithms were chosen and implemented. An existing algorithm
'’ was modified to extract automatically accurate, reference pitch and voicing m T

L data from the subglottal signal recorded simultaneously with the speech-— - S
KR
-\ DD , 53", 1473  woimon or 1 wov e 13 cesoLETE :

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) e

. ., L .t . . el [ Y - . e N A S
- P et T e et T e T e e T cen e T T e T T Re e ©o el L te e et _-, TN TN LA
o DA Cet e . o - . PR e e e LR R I T S el ..“‘J""‘




[‘r.f. e R e T N T T W TR oer g o m—

P4

UNCLASSIFIED ' =
SECURITY CLASSIPICATION OF TS PAGE When Dete Entered)

4?signa1 using a miniature accelerometer; this data was used for objective

L evaluation of pitch extractors. Since the accelerometer is relatively in~
sensitive to acoustic background noise, this method yields accurate pitch =
and voicing data even in noise. )

\For formal subjective evaluation of the chosen pitch extractors, a speech ‘
database of 48 sentences that are likely to cause pitch and voicing errors n
was developed. Test stimuli were generated using two 2.4 kbit/s coders
(LPC and HDV),/6 pitch extractors (5 algorithms under test and the ref-
erence), and 2/ noise conditions (clear and Air-Borne Command Post or ABCP
noise). Two jepatate tests, one for each noise condition, were run. Eight
listeners rated the speech quality of the stimuli on an 8-point scale.

2 The results of the subjective tests showed the reference subglottal-signal-
s based pitch extractor to be the best under all four coder/noise conditionms,
hl validating its use as reference in the subsequent objective evaluation work.
The results also indicated two best pitch extractors under test; one pro-
duced the highest mean rating in the clear and the other, in ABCP noise.

§ -~ The objective evaluation method developed in this work involves comparing

. on a frame~by-frame basis, the test pitch extractor data with the reference -
E; pitch data, computing objective pitch and voicing error measures, and -
averaging over the sentences from the speech database. developing

objective measures, a study was first conducted to assess the perceptual

_ effects of introducing different types and amounts of pitch and voicing

; errors into the reference pitch data. Based on the results of this study,
' a large number of objective measures for evaluating pitch extractors were
developed, using different combinations of one or more of the following
components: percentage of the frames containing voicing errors and gross
pitch errors, energy weighting, weighting based on the duration of the
errors, pitch frequency and pitch error weighting, and context-dependent
error measurement. Two previously reported objective measures were also -
implemented. Twelve of the objective measures developed in this work pro-
vided consistently high correlation with mean subjective ratings in each of
the four cases, two coders each in clear and in ABCP noise. In contrast, *
the previously reported measures provided high correlation in the clear and
substantially lower correlation in the noise. Finally, the best overall
objective meaure produced excellent correlations, ranging from -0.953 to -
=-0.995, with the overall mean subjective rating. This measure also pre- E
dicted nearly perfectly the rank ordering of the five test pitch extractors
by the subjective rating, in all coder/noise conditions.
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A SPECIAL NOTE

We had received magnetic tape copies of the pitch extraction programs

directly from the respective authors or their associates. We carefully tested

these programs before we evaluated them using subjective and objective
methods. In cases of problems, we consulted with the authors whenever

possible. However, we do not rule out the possibility of mistakes in the way

. d
we had used these pitch extraction programs. We have pointed out in the SR
report an inadvertent error in the amount of delay we had used for the Gold |

pitch detector, which led to its higher pitch and voicing errors and lower
subjective scores. We sincerely apologize for this mistake. A thorough check : ;

did not reveal any further mistakes. We have confirmed that the same sets of :;_’.’_-“
pitch and voicing data were used for both subjective and objective evaluationm.
This ensures that the high correlation scores we obtained for our objective

pitch evaluation measures are indeed accurate.
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1. INTRODUCTION

The overall objective of this project was to conduct a comparative
evaluation of selected pitch and voicing extraction algorithms for use in 2.4
kbit/s LPC and harmonic deviations speech coders. In this chapter, we state
the specific goals of this work (Section 1.1), present the highlights of this
work (Section 1.2), and provide an overview of the rest of the report (Section

1.3).

1.1 Goals of the Project

As part of an earlier project (Contract No. DCA100-80-C~0039), we had
developed the harmonic deviations (HDV) coder [1, 2]. At a synchronous
transmission data rate of 2.4 kbits/s, the HDV coder produces noticeably
better speech quality than does the U.S. Government standard coder LPC-10..
However, both the HDV and LPC-10 coders use the same AMDF-DYPTRACK algorithm
for extracting the pitch and voicing data [3]. 1In our experience dealing with
the real-time LPC-10 coder implemented on the MAP~300 array processor {4] and
in the experience of others, the AMDF-DYPTRACK algorithm produces pitch and
voicing errors for certain types of speakers. Also, for a given speaker, the
algorithm works well when the speaker talks with a nearly monotone pitch, but

tends to produce pitch errors when the speaker uses a large pitch range to

.............................................................

.................
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reflect his/her excitement, for example. The pitch and voicing errors
mentioned above cause the coder output speech to degrade noticeably. For the
HDV coder, pitch errors produce an additional effect. Since the HDV coder
achieves speech quality improvement over the LPC-10 by correcting the
amplitudes of the LPC model spectrum at a selected set of the harmonics of the
fundamental frequency, any error in the extracted pitch tends to reduce the
effectiveness of the spectral corrections and hence reduce the extent of

improvement over the LPC-10.

Based on the above conmsiderations, our goal in the present project was to
study and comparatively evaluate existing pitch and voicing extraction
algorithms, with specific emphasis on their use in the HDV coder, For
comparison purposes, we also included in our work the application to the LPC

coder. Specific objectives of this project are stated as follows:

o Study and review a number of published algoritbms for pitch and
voicing extraction

o Select several algorithms for comparative evaluation and implement
them on our computer

o Develop a speech database containing speech materials and speakers
specifically chosen for testing pitch extraction algorithms

o0 Develop a method for obtaining accurate pitch and voicing data to be .
used as reference in objective evaluation of pitch extractors A

1
e
o
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0 Evaluate the selected pitch and voicing extraction algorithms using }
formal subjective listening tests in which subjects compare the SR
speech outputs obtained using each of these algorithms in both the S

HDV and LPC coders, under two conditions: o

1. clean or noise-free input speech and _f:-
E 2. input speech corrupted by Air-Borne Command Post (ABCP) noise -

o Develop objective wmeasures for evaluating pitch extractors, which :“1
produce high correlation with subjective judgments from the above-

- mentioned listening tests.
"
-l

Before we present the highlights of our work, we point out that we use -
the term “pitch extractor” to mean pitch and voicing extractor. Also, "_jti‘_‘*
strictly speaking, pitch frequency refers to a perceived attribute of the ;
———
physically measurable quantity fundamental frequency. For the purpose of this .
report, however, we do not distinguish between the two terms, pitch frequency ::'_E:'-:'_
e
and fundamental frequency. BN,
o

1.2 Highlights of the Work

From a review of the available pitch extractors, we chose and implemented
five algorithms: one is the AMDF-DYPTRACK pitch algorithm used in LPC~10

(denoted in this report as AMDFD); one is a time-domain, parallel-processing

algorithm (Gold pitch detector); one uses the power spectrum to determine the
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harmonic patteru (Harmonic-Sieve or H~S algorithm); and two use the cepstrum
(Interactive Laboratory System or ILS algorithm and Joint Speech Research Unit
or JSRU algorithm). To bring up the five algorithms on our computer, we
obtained the magnetic tape copy of the working programs from the respective
authors or their associates. In our initial tests of the five algorithms, we
used Texas Instruments speech and hand-edited pitch databases. Also, we
conducted informal listening tests on speech output from the LPC and HDV

coders using each of the five pitch extractors.

To extract accurate, reference pitch and voicing data, which is required
for objective evaluation of pitch extractors, we developed and tested an
automatic method that uses as input the subglottal signal recorded
simultaneously with the speech signal using a miniature accelerometer. The
method (denoted in this report as FPRDM, where FPRD stands for "fundamental
period" and M stands for "modified") is a modification of the ome originally
developed at Massachusetts Institute of Technology. The original algorithm
provides pitch-synchronously a pitch value and an associated confidence level.
Our modified algorithm extracts the voicing decision and provides both pitch
and voicing data time-synchronously as required by the LPC and HDV coders and
a8 required for objective evaluation. Since the accelerometer is relatively

ingensitive to acoustic background noise, the FPRDM method yields accurate

............. ..
......... .
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pitch and voicing data even in noise.

For formal subjective evaluation of the chosen pitch extractors, we
developed a speech database of a total of 48 sentences from three male and
three female speakers, representing a wide range of pitch. We selected the
speech materials from a phoneme-specific database of 120 sentences (developed
as part of an earlier BBN project) and the speakers from a population of 12
males and 12 females in such a way that both the sentences and the speakers
are likely to cause pitch and voicing errors, which facilitates efficiemnt
subjective and objective testing of the pitch extractors. We used the real-
time LPC-10 coder running on the MAP-300 in this selection process. We
generated the test stimuli using two coders (LPC and HDV), six pitch
extractors (FPRDM and the five algorithms under test), and two noise
conditions (clear and ABCP). We ran two separate tests, onme for each noise
condition. Eight listeners rated the speech quality of the stimuli on an 8-
point rating scale. We computed the mean rating scores for each pitch
extractor under four conditions: LPC/Clear, HDV/Clear, LPC/Noise, and

HDV/Noise. The major results of the subjective tests are as follows:

o The FPRDM pitch was judged to the best for all four coder/moise
conditions. This result validates our use of the FPRDM pitch as
reference for objective evaluation.
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o Of the five test pitch extractors, the AMDFD algorithm produced the
best speech quality in the clear condition, with the JSRU wmethod
being slightly worse. 1In ABCP noise, however, the JSRU method was
far superior to all four pitch extractors; AMDFD was rated third,
being only slightly worse than the second place ILS algorithm.
Overall, the results show JSRU and AMDFD to be the two best pitch
extractors.

o Differences in the mean ratings between the HDV coder and the LPC
coder were small. The reason for this result is that the sentences
included in the tests were designed to expose the differences among
the pitch extractors and are not suited to demonstrate the speech
quality differences between the two coders.

For developing objective pitch evaluation measures, we first conducted a
study involving informal listening tests, to assess the perceptual effects of
introducing different types and amounts of pitch and voicing errors into the
reference pitch data. The objective evaluation method involves comparing, on
a frame-by-frame basis, the test pitch data obtained using a pitch extractor
under evaluation with the reference FPRDM pitch data, computing objective
pitch and voicing error measures, and averaging over the sentences from the
speech database. Based on the results of the above-mentioned perceptual
study, we developed a8 large number of objective measures for evaluating pitch
extractors, using different combinations of one or more of the following
components: percentage of the processed frames containing voicing errors and
pitch errors that are larger than a threshold (10%), weighting of the errors

based on speech signal emergy, weighting based on the duration of consecutive

...............................
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errors, weighting based on pitch frequency and pitch error, and context-
dependent error wmeasurement. We also implemented two objective measures
previously reported in the literature. We correlated the data from each
objective measure with the mean subjective rating scores in each of eight
different conditioms: For each of the four cases, LPC/Clear, HDV/Clear,
LPC/Noise, and HDV/Noise, we considered the subjective rating data in two
vays, once as the overall mean ratings over the complete database of 48
stimulus sentences (six speakers x eight sentences) and once as the more
detailed mean ratings over eight subsets of six stimulus sentences each. The
correlation values evaluated at the detailed level will be lower than those
evaluated at the overall level. From the correlation results, we selected a
set of 12 objective measures each of which produced consistently high
correlation in all eight conditions. The mean correlation over the four
coder/noise conditiomns ranged from -0.906 to -0.982 at the overall rating
level and from -0.842 to -0.902 at the detailed level. The mean correlation
over all eight conditions ranged from ~0.891 to -0.942. 1In contrast, the two
previously reported measures produced high correlation in the clear and
substantially lower correlation in the ABCP noise. The mean correlations over
the eight conditions were only -0.561 and -0.824 for those two measures.
Finally, our best overall objective measure produced correlations ranging from

-0.953 to -0.995 at the overall level and from -0.867 to -0.929 at the
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detailed level. This measure also predicted nearly perfectly the rank

ordering of the five test pitch extractors by the subjective rating, in all

four coder/noise conditions.

1.3 Overview of the Report

In Chapter 2, we describe briefly the 2.4 kbit/s LPC and HDV coders used
in this work. Chapter 3 contains a description of the five pitch extractors
wve chose to evaluate.‘ In Chapter 4, we present the results of our initial
objective and informal subjective evaluation of the chosen five pitch
extractors, using Texas Instruments speech and hand-edited pitch databases.
In Chapter 5, we present a method for gemerating accurate, reference pitch and
voicing data; this method uses subglottal signal recorded during speech with a
miniature accelerometer attached to the speaker’s throat. Chapter 6 deals
with formal subjective evaluation of pitch extractors, and it contains a
description of the speech database we designed, the subjective test we used,
and the test results we obtained. 1In Chapter 7, we present the results of our
effort to understand the perceptusl effects of pitch and voicing errors, as a
precursor to the development of objective measures for evaluating pitch
extractors. The topic of objective evaluation of pitch extractors is then

treated in Chapter 8. Finally, in Chapter 9, we present a summary of this
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v :j work and discuss some issues that warrant further research.
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2. TWO 2.4 KBIT/S SPEECH CODERS

. - Below, we describe briefly the 2.4 kbit/s LPC and HDV coders we used in
this project. Both coder simulations permit the option to read inm pitch and
voicing data from disk files generated using separate pitch programs. This
option allowed us to generate coder output speech data for each of various

pitch extractors in a convenient manmer.

2.1 LPC Coder

The analog input speech is lowpass filtered at 5 kHz, sampled at 10 kHz,
and divided into non-overlapping frames of 20 ms duration for linear
prediction and pitch analyses. For every analysis frame, the following
quantities are transmitted using a total of 48 bits: a synchromizatiom bit,
voicing status (1 bit), pitch (6 bits, logarithmic quantization), speech
signal energy (5 bits, logarithmic quantization), and 12 log area ratios (35
bits total, optimal scalar quantization involving orthogonal transformation of

the log area ratio vector and nonuniform scalar quantization of transformed

parameters (1, 2]). The receiver uses the binary pulse/noise excitatiom for

-
-
.
{

y

.. -

the all-pole synthesis filter to generate the output speech.
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2.2 HDV Coder

. A detailed description of the 2.4 kbit/s HDV coder algorithm is given
in [1, 2]. The HDV coder algorithm may be summarized as follows. In the

transmitter, the analog speech is lowpass filtered at 5 kHz, sampled at 10

: kHz, and divided first into non-overlapping frames of 20 ms duration and then
into 9-frame blocks. A variable frame rate (VFR) algorithm is used to select
and transmit only 6 frames of data every block, along with a block header (6
!; bits long) to identify the transmitted frames. For every frame selected by
the VFR algorithm, the following quantities are transmitted: a
synchronization bit, voicing status (1 bit), pitch (6 bits, logarithmic
i quantization), speech signal energy (5 bits, logarithmic quantization), 12 log
- area ratios (37 bits total, optimal scalar quantization), and 3 selected
: spectral A’evi.ati.ons (2 bits each) between the log spectrum of the speech
' signal in the frame and the log spectrum of the all-pole model. These
quantities are quantized, coded, partially error-protected, and transmitted
across the channel. Error ptot_ection is provided by sending the block header :
;l, in 3 copies, sending the frame voicing bit in 5 copies, and using 3 Hamming o 1-
- (7, 4) codewords per transmitted frame to protect 12 selected bits of the T -1
:f_:: parameter data. At the receiver, the data for the untransmitted frames are ) _;H
. regenerated by linear interpolation between adjacent transmitted frames. The _'
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output speech of the coder is synthesized, pitch-synchronously for voiced
frames and every 10 ms for unvoiced frames, by generating the excitation
signal using the spectral deviations and applying it to the all-pole synthesis

filter.

The AMDF-DYPTRACK pitch algorithm used in the HDV coder algorithm
produces pitch estimates that are already quantized to one of 60 levels. The
HDV coder proétnn, therefore, did not quantize the pitch. For investigating
the use of other pitch extractors in the HDV coder, we modified the original
HDV coder program by adding provisions to quantize pitch using 6 bits. We
ugsed a pitch coding range of 20 to 156 samples or 64 to 500 Hz, which is about
the same range used in the AMDF-DYPTRACK method. We quantized the log pitch
using a2 method developed at BBN, which makes effective use of the quantization

levels at the small pitch period end [5].

12
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T

3. FIVE PITCH EXTRACTORS

. - Extraction of pitch and voicing forms an important part of a variety of
speech processing systems. As testimony to this fact, literally hundreds of
algorithms have been reported in the literature for extracting pitch and

: - voicing. For a detailed survey of these algorithms, the reader is referred to
the book [6]. Most algorithms for extracting pitch and voicing have three

S components: preprocessor, basic extractor, and postprocessor. The basic

-——
'

extractor performs the actual measurement of pitch and voicing. The function
of the preprocessor is to process the input speech signal with the goal of
simplifying the foregoing measurement task. The distribution of the algorithm
complexity between the preprocessor and the basic extractor varies over

individual algorithms. The postprocessor smooths or detects and corrects

possible errors in the extracted pitch contour.

s
(3

From a reviewv of the existing pitch extractors, we chose for our
comparative evaluation work five algorithms that are described briefly in this

chapter. Our choice was governed to some extent by our attempt to include as

o
i =
g
: .
3

many different pitch and voicing extraction approaches as possible and to a

large extent by the ease of transportability of the algorithm implementation

v F ¥V & T "
LSRR

Il
.

to our VAX-11/780 computer (running under VMS operating system). Of the

RACROL M AT
N 4
[

' 13

R AL B

DAY

et L R T T T et e e s - - et NPT - PN PN N
I AP IR Ty e e e . RN T e T et T e e e e e T T s T T
- e SN SRR T LAV O SR R A R S W S S T R VRO P DS R A




Report No. 5726 Bolt Beranek and Newman Inc.

chosen five algorithms, one is a time-domain algorithm (Gold); one uses the
so-called average magnitude difference function (AMDF-DYPTRACT); one uses the
pover spectrum (Harmonic-Sieve); and two use the cepstrum (ILS and JSRU
algorithms). The AMDF-DYPTRACK and ILS algorithms were already available on
our computer. To bring up the other three algorithms om our computer, we
obtained the magnetic tape copy of the working programs from the respective
authors or their associates and made only minor changes as described below.
In our installation, each pitch program accepts as input a speech waveform
file and provides as output a frame-by-frame pitch data file containing zero

for unvoiced frames and pitch period in number of samples for voiced frames.

3.1 AMDP-DYPTRACK Algorithm .

As noted above in Section 1.1, the AMDF-DYPTRACK algorithm is used in the
U.S. Government standard coder LPC-10 [3] and in the HDV coder we developed as
part of an earlier project [1, 2]. This algorithm computes an estimate of the
pitch for a frame by locating the minimum of the so-called average magnitude
difference function (AMDF) and uses a dynamic-programming-based tracking
(DYPTRACK) method to refine and smooth the computed pitch estimates. We shall

refer to this algorithm by the abbreviation AMDFD.

14
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As preprocessing, the AMDFD algorithm lowpass filters the input speech at
800 Hz and spectrally flattens the filtered signal by passing it through a
second-order linear prediction inverse filter. An estimate of the pitch
period is determined by computing the AMDF function for the inverse-filtered
signal over a set of sixty lags (over the range of 20 to 156 samples) and
identifying the lag at which the AMDF function is minimum. Notice that this
pitch estimation process involves an inherent quantization as it allows only
sixty lags. The voicing detector uses an energy measure, ; zero-crossing
count, and the maximum to wminimum ratio of the AMDF function. As
postprocessing, the pitch and voicing results are smoothed and corrected by a

dynamic programming algorithm, which introduces two frames of delay.

We believe that the Fortran AMDFD program we have om our computer
corresponds to Version 44 of the LPC-10 coder. The AMDFD algorithm as
implemented in LPC-10 has been "hard-wired” to operate under the conditioms of
LPC-10 such as 8 kHz sampling rate and 22.5 ms frame rate. Also, the
algorithm extracts one pitch value and two half-frame voicing decisions each
frame., OQur simulations of both the HDV and LPC coders accept only one voicing
decision per frame. Furthermore, some of the decision parameters used in the
algorithm are adaptive in that their values evolve continuously in time.

Thus, the algorithm will not, in general, produce satisfactory results if one

15
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ugses it on a one-sentence-at-a-time basis rather than for continuous speech

processing. To resolve these problems and to be able to use the algorithm for h _,.i
- ®
different frame rates and two sampling rates (8 and 10 kHz), we made several '
modifications to the algorithm as part of an earlier project. These
modifications are described in detail in the report [1]. ]
» .
3.2 Gold Pitch Detector 1
In this method [7], a series of meassurements are made on the peaks and -~ i =
. -4
valleys of a lowpass-filtered speech signal to produce six separate functions. o
Each of these six functioms is processed by a simple pitch .estimator. The w
resulting six pitch period estimates are analyzed using a decision logic to - i~—-—-—:
-~ T
determine the pitch period. The decision logic is set up to give ome pitch j
T el Y
period estimate per frame period. The degree of agreement among the six SCERINA
simple pitch detectors is a parameter that is used in making the voicing i b
decision. We note that the parallel processing method of Gold and ' 1
S
Rabiner [8], which has been used in other studies comparing pitch and voicing R
extraction algorithms [9, 10}, is a simplified version of the Gold pitch R
|
detector. i 1
e
The version of the Gold pitch detector used in our project was __ _ '
L
e
"‘-‘..q'w
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implemented in C by Mr. E. Singer of Lincoln Laboratory. This version
included a 3-point median smoothing of the extracted pitch data. Initially, L
this program required 8 kHz sampling rate and 22.5 ms frame rate. Upon our
request, Mr. Singer provided us with a modified version to use either 8 kHz or

10 kHz sampling rate and any user-specified frame rate. - -

3.3 Harmonic-Sieve Method

In this method [11], input speech is lowpass filtered to a bandwidth of
2.5 kHz. Power spectrum of the filtered signal is computed over a 40-ms
analysis frame. Peaks are located on the power spectrum as potential
harmonics of the fundamental frequency. Using a harmonic-sieve procedure, the

algorithm determines the harmonic pattern and the associated pitch frequency

that best match the measured spectral peaks. The extent of the match is used
in making the voicing decision. The harmonic-sieve (H-S) method uses no
postprocessing. The authors of the H-S method argue that their method is
optimal in that it is based on Goldstein”s theory of pitch perception in

complex sounds [12].

We received a magnetic tape copy of s Fortran implementation of the H~S

method from Mr. L.F. Willems of the Institute for Perception Research,

17
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Eindhoven, The Netherlands. This program assumes 10 kHz sampling rate and 100
frame/s analysis rate. We modified the program to use an analysis rate of

either 100 or 50 frames/s.

3.4 1ILS Cepstral Algorithm

This algorithm is part of the Signal Technology Inc. Interactive
Laboratory System software package {13]. Input speech is preemphasized, and
the log magnitude spectrum is computed. A tapered cosine window is applied to
the log magnitude spectrum before computing the'cepstrum. The cepstrum is
weighted using a cepstral multiplier, and the peak of the weighted cepstrum is
located. The cepstral lag corresponding to the peak gives the estimated pitch
period. Voicing is extracted using a statistical linear discriminant functiom
approach involving the following quantities: the cepstral peak value, the
number of zero crossings in the frame, the first reflection coefficient
resulting from linear prediction analysis of input speech over the frame, and
the linear prediction residual signal energy. A heuristic method is used to
smooth the extracted pitch over 3 frames; this method produces a delay of 1
frame. 1In our work, we used the default parameter settings given in the ILS

package.

18

= - - . . -~ e st B -~ . . - ., - . - P L B i e
. . NG U S AR EA L PRR * P N T R S S Y B
LR . JAFQE I LN G A G LN sadoacd oa e IR I W S WY N WP AP SIS S W S .

I.

d




o p— Cnan B e T S W e~ r—r— ———y ~—

Report No. 5726 Bolt Beranek and Newman Inc.

3.5 JSRU Cepstral Algoriihm

This algorithm was developed at the Joint Speech Research Unit,
Gloucestershire, U.K. [14]. In this algorithm, input speech is sampled at 10
kHz, preemphasized using simple differencing (6 dB/octave preemphasis), and
analyzed over 512-sample frames at a rate of 100 frames/s. Analysis includes
a number of steps: Hamming windowing; power spectrum computation; computing a
ratio of low-frequency power (40-1200 Hz band) to high-frequency power
(2.7-3.9 kHz band); log power spectrum computation; "“conditioning"” the log
pover spectrum by replacing the values at the high-frequency end (above about
4.1 kHz) with a constant equal to the average over the baseband (20 Hz to 4.1
kHz) and by eliminating excessive dips in the baseband below this average;
cepstrum computation from the conditioned log power spectrum; smoothing the
cepstrum using a 3-point FIR filter with weights 1, 2, and 1; locating the
peaks in the cepstrum; and finding the location and values of the two largest
cepstral peaks. The next step involves the use of a set of heuristics in
making the voicing decision and in obtaining a pitch value for the frame under
consideration. The heuristics examine the size of the cepstral peaks and the
low-frequency to high-frequency power ratio mentioned above; check for
possible pitch frequency doubling or halving; and ensure consistency with the

pitch and voicing data over the past two frames. Finally, the algorithm

19
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declares any isolated unvoiced frame as voiced. . ;ff

For the 100 frame/s analysis rate, the algorithm introduces five frames
of delay: three frames of delay caused by an offset of the input speech frame
from the center of the 512~sample analysis interval, one frame of delay
introduced in the heuristics module, and another frame of delay caused by an
isolated unvoiced frame check. 7Two additional frames of delay are introduced
for the voicing state to allow for smoothing in the JSRU synthesizer. We
removed the latter two-frame delay of the voicing state and compensated. for
the five frames of delay (by shifting) prior to output to a pitch file., We
also modified the JSRU progran.to allow the use of either 100 frame/s or 50
frame/s analysis rate. For the latter analysis rate, the delay introduced by - -

the algorithm is only three frames.

20
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4. INITIAL INVESTIGATION OF THE FIVE PITCH EXTRACTORS

.. The purposes of our initial investigatiom of the five pitch extractors
reported in the last chapter were to ensure the proper operation of the

individual pitch extractors, devoting attention particularly to the changes we

made to the original algorithms; to examine carefully the delay introduced by
- each algorithm; to get some initial reading on the comparative performance of
the five algorithms; and to conduct some preliminary testing of the use of
# v these pitch and voicing algorithms in the LPC and HDV coders. For this
investigation, we used a subset of the speech database developed by Texas

Instruments (TI), as described in Section 4.1. We also used several simple

objective error measures given in Section 4.2. The results of our objective

and subjective tests are presented, respectively, in Sectioms 4.3 and 4.4.

4.1 TI Speech and Pitch Databases

We obtained from TI a speech database of a total of 58 sentences from 32
male and 26 female speakers (one sentence per speaker) ranging in age from 6
to 87 years [10]. Speech was digitized at 12.5 kHz. We also received from TI
reference pitch files (10 ms frame) for these 58 sentences, which were
obtained by hand-editing the pitch data generated using the ILS cepstral pitch

extractor.
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For use in our investigation, we selected a subset of 12 sentences from

speakers ranging in age from 7 to 80 years, and digitally resampled the 12.5

kBz waveform files at 10 kHz using the interpolation-decimation approach. To
check the accuracy of the TI hand-edited pitch we examined waveform displays
- of the 12 sentences. We compared the voicing status and pitch period values
i: as determined by visual inspection with the TI pitch data. We found that the
L TI data gave good estimates of pitch period values in steady state voiced
; regions and represented the pitch dynamics reasonably well when pitch changed
kb rapidly. We also noted that the TI voicing decisions were correct for all
obviously voiced and unvoiced regions. At transitions, the TI data had a

tendency to extend voicing somewhat. Although a few of the voicing decisions

could be questioned, we concluded that the TI hand-edited pitch data provided -

reasonably accurate pitch period estimates and voicing decisions.

For the objective and subjective evaluations reported in Sections 4.3 and -
4.4, we used only 6 of the chosen 12 sentences. Table 1 gives the five

distinct sentences (one sentence spoken by two speakers), and Table 2 gives

speaker details.

For the full 58-sentence database, we also obtained from TI the pitch . ii{u
] files generated using their integrated correlation pitch program [15]. We - _l ‘
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1. Very few angels are always wise and pure.
2. A great future is always provided the student of music.
3. Almost everything involved making the child mind.

4. The view of the present will largely be reached in the following
century.

5. The wife’s figure had already adjusted by itself.

TABLE 1. Speech materials used in the chosen subset of the TI database

h v Spoken

Sex Age Sentence #
5 Male 24 1
Male 36 5
Male 42 3
Female 33 4
Female 36 S
Female 40 2

TABLE 2. Details of speakers included in the chosen subset of the TI
database.

could not get their pitch program for proprietary reasons. This pitch

algorithm, which we refer to as the TI pitch algorithm, uses an adaptive I~

pole filter for preprocessing the input speech, a modified correlation

technique for extracting candidate pitch values, and a dynamic programming

technique for both making voicing decision and obtaining a smoothed pitch
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- estimate [15]. We included the TI pitch algorithm in some of our

investigations, primarily for comparisom purposes.

4.2 Pitch and Voicing Error Measures

s In objective evaluation of a pitch extractor under test, we compare the
test pitch dats obtained using this extractor with the reference pitch data oun
a frame-by-frame basis. A comparison of the test pitch value with the
'.’ reference pitch value for any given frame indicates one of four possibilities

listed below.

1. Both the test and the reference pitch values are zero indicating
i that the frame was declared unvoiced in both test and reference -—
pitch files. For this case, no error has occurred. .-

2. The reference pitch value is non-zero, but the test pitch value is
L zero. Thus, a voicing error has occurred, and we denote this error
as a voiced-to-unvoiced (VUV) error.

i 3. The reference pitch value is zero, but the test pitch value is non- -
zero. Thus, a voicing error has occurred, and we denote this error .
as an unvoiced-to-voiced (UVV) error.

4, Both the reference and test pitch values are non-zero. For this

; case, we compute the pitch error between the two values.
»4‘ “ - 1
"::'. For the fourth case, we classify the pitch error as a gross pitch error ::;'_.;::
if the magnitude of the quantity 100(FT-FR)/FR exceeds a prespecified e .'j'-jfjf;
» S
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threshold, where FT and FR are, respectively, the test and reference pitch

I frequency in Hz. 1In our investigation, we have used a threshold of 10% in
=

deciding gross pitch errors. A pitch error that is not a gross pitch error is

called a fine pitch error.

We developed an interactive program, called PEVAL (short for pitch
evaluation), to compare test pitch data with reference pitch data and compute

pitch and voicing error statistics. PEVAL uses our command interpreter

R

software so that the user may interactively control the execution of various
o components of the program. The PARAMETER command allows the user to set
various parameter values, and the COMPARE command allows the user to compare

the test pitch data with the reference pitch data for one utterance or a group

. .
e .

of utterances, by providing as input one or more pairs (test, reference) of

-~
0
LN

pitch files. (For additional PEVAL commands, see Chapter 8.) We note that

the frame sizes of the reference and test pitch files need not be equal. In

53 . fact, PEVAL performs the comparison at any user-specified frame size by

converting, if necessary, the reference and test pitch data to correspond to

nIeT e

-~ this frame gsize via linear interpolation of log pitch.
&: :% PEVAL computes the count of each of the three types of errors, VUV, UVV,
PT e
|

and gross pitch errors, as a percentage of the total number of frames used in
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the comparison, and determines the total error by adding the three
percentages. For fine and gross pitch errors, the program computes the mean
and standard deviation. Also, for gross pitch errors, the program identifies
pitch frequency doubling and halving errors and computes the total number of
each. If the wmagnitude of the difference between the reference pitch
frequency and half (twice) the test pitch frequency, expressed as a percentage
of the reference pitch frequency, is less than a threshold (we used 10%), the
pitch error is classified as pitch frequency halving (doubling). PEVAL
computes various other statistics including duration of a consecutive
occurrence of a given error type, location of error (voiced region, unvoiced
region, voiced-unvoiced transition, and unvoiced-voiced transition), and

missing voiced or unvoiced regions. (See Chapter 8 for more details.)

The five basic error measures (percent VUV error, percent UVV error,
percent gross pitch error, and mean and standard deviation of fine pitch
error) have been previously used for objective evaluation of pitch
extractors [9]. However, we point out that pitch error is computed in {9] as
difference in pitch period in number of samples between test and reference
cases and is compared against a threshold in deciding if it is & gross pitch
error. We believe that using the percentage pitch frequency error as

described above is perceptually more relevant. Also, this method allows us to

26
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~ compare directly two pitch files gemerated using different speech sampling

rates.

4.3 Objective Evaluation

We processed the 12 TI sentences mentioned in Section 4.1 through each of
the five pitch extractors, using 10 kHz sampling rate and 10 ms frame size

(i.e., a frame rate of 100 frames/s), and evaluated the resulting pitch data

-—a

using PEVAL with TI hand-edited pitch data as reference. We found that the
pitch and voicing errors given by PEVAL were considerably higher for the
Harmonic-Sieve and Gold pitch extractors tharn for the other three. This
': result prompted us to check if we were using the correct time delay for each

pitch extractor. To do this task, we modified PEVAL to include the option of

-~

-
e

skewing the test pitch file with respect to the reference pitch file by a

prespecified number of frames. If there was an unaccounted delay being

introduced by the pitch extractor, the total error (sum of VUV, UVV, and gross
pitch errors) should decrease as this delay is removed. The results of this
test on the various pitch extractors are shown in Fig. 1. (A negative skew
refers to rempving frames from the beginning of the test file, thus shifting

. the test file backward with respect to the reference file.)
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We see from Fig. 1 that the plot for the Harmonic-Sieve method has a
minimum between ~1 frame and ~2 frames. We examined the Fortran code of this
method and found that the 40-ms analysis interval used contained the curreat
10-ms frame and the three past frames. If we associate the extracted pitch
with the center of the analysis interval and the current frame®s pitch with
its center, we find a delay of 15 ms or 1.5 frames. As PEVAL uses only
integer number of frames, we decided to use a 20 ms or two-frame delay. We
note that the documentation of the Harmonic-Sieve method did not mention about

any delay.

Referring to Fig. 1, we find that the Gold algorithm shows a minimum at
=2 frames. From a discussion with the author of the program (E. Singer), we
identified the two frames of delay as being caused by lowpass filtering and

median smoothing.

Notice from Fig. 1 that all other pitch extractors yield a minimum at a
skew of 0 frames, which indicates that we had correctly accounted for their
delays. (The plot for the JSRU method, not shown im Fig. 1, also yielded a
minimum at 0 frames of skew.) The compensation of the foregoing delay reduced
the total error by about 5% for the Harmonic-Sieve method and by about 10Z for

the Gold algorithm.
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With the time delay correctly compensated as discussed above, we

evaluated, using PEVAL over the subset of six TI sentences given in Section

4.1, all six pitch extractors: AMDFD, Gold, H-S, ILS, JSBU, and TI. The B
resulting various error measures are given in Table 3. Except for fine error

E mean, all other errors are each expressed as a percentage over the total

r number of data frames considered (see Sectiom 4.2). Total error is again the
sum of VUV, UVV, and gross errxors.

b
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-.?'-f Error AMDFD Gold H-=§ ILS JSRU I1

s Percent VUV ' E;E
- - Error 2.81 7.60 9.44 3.46 7.26 0.79

;n . Percent UVV

{’ 5 Error 1.45 2.29 0.99 3.36 2.10 4.67

' Percent Gross o
': Error 6.77 2.93 5.17 5.82 1.90 6.36 ]

i Total Error 11.03 12.82 15.60 12,64 11.26 11.82

!

Pitch

Doubling 0.40 0.00 2.43 0.10 0.00 0.05

Pitch
Halving 0.35 1.54 0.05 2.30 1.10 2.68

SR DS

Fine Error
Mean 0052 1013 -0.01 -0'33 0-59 0.83

TABLE 3. Pitch and voicing error results obtained over the six TI
sentences, for six pitch extractors.
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From Table 3, we see that over the six sentences considered, the AMDFD
algorithm produced the least error and the Harmonic-Sieve method produced the
most error. The JSRU algorithm, which was only slightly worse than AMDFD,
yielded the least gross pitch error. AMDFD provided the least voicing error

(sum of VUV and UVV errors).

To test the effect of smoothing, we applied a 3-point median smoother to
the pitch data from the various pitch extractors and reexamined their errors
using PEVAL. The median smoother was designed to work continuously omn all
frames regardless of voicing boundaries and thus was able to correct one frame
isolated voicing errors. The smoothing did not decrease the overall error for
any of the algorithms by more than 0.5%, and in the cases of the Harmomic-
Sieve and Gold algorithms, the error was actually increased by approximately
0.1Z. A possible reason for the increase in the Gold algorithm is that it

already uses 3-point median smoothing as noted above.

4.4 Subjective Evaluation

We performed informal listening tests of the six TI sentences of speech
synthesized using the HDV coder with the pitch and voicing data from each of

the six pitch extractors. Judging from the overall speech quality, we felt
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that the AMDFD algorithm was the best, closely followed by the JSRU, TI, ILS,

and Gold algorithms. The Harmonic-Sieve method produced the worst quality;
specifically, both voicing and pitch doubling errors were quite audible. The
ILS algorithm produced all of the pitch halving errors in two sentences, which

vere quite evident in informal listeming. For the JSRU method, the HDV coder

e

speech sounded quite natural during correctly voiced regions, but the voicing

errors significantly degraded the overall quality. 1In general, the presence

of UVV errors degraded the speech quality less than did the presence of VUV
errors. The reason for this result is that the frame energy associated with

UVV errors is in general lower than that of the VUV errors.
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5. A METHOD FOR GENERATING REFERENCE PITCH DATA

In this chapter, we review Henke’s FPRD (short for fundamental period)
algorithm for extracting accurate pitch from the subglottal accelerometer
signal recorded during speech (Section 5.1). We then describe a conversion
routine we developed to extract voicing decision from FPRD output data and to
convert pitch-synchronous FPRD pitch data to time-synchromous data as required
by our LPC and HDV coders and as required for objective evaluation (Section
5.2). The results obtained using this modified FPRD program on the speech

signal are presented in Section 5.3.

5.1 FPRD Algorithm

This algorithm was developed at MIT by Dr. W. Henke [16]. In this

method, a two-channel tape recording is made of the speech signal transduced

by & wmicrophone and the subglottal signal transduced by a miniature,

lightweight accelerometer, which is attached with double-sided adhesive tape
to the speaker’s throat on the midline in the suprasternal notch and just

below the glottis. We used the Vibro-Meter Corporation (formerly BBN

Instruments Corporation) Model 501 accelerometer, which weighs less than 2

grams. The FPRD method uses the accelerometer signal to extract accurate

pitch data. PFigure 2 displays the speech signal and the accelerometer signal,
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]
&E during phonation of the vowel [a]. From the figure, it is clear that the T i{;z
3 subglottal signal displays the individual pitch periods (albeit shifted by A iiﬁ

about 1 ms relative to the speech signal, because of propagation time delay),

P N 0% 43 o

without the resonances of the vocal tract. It has been found that the time of _ "}

the major negative-going zero crossing in the subglottal signal, shown by
arrows in Fig. 2, provides a stable segmentation point for delimiting
individual pitch periods [16]. Henke refers to the rapid change around this

zero crossing from outward to inward acceleration immediately following the

maximum acceleration as the "flyback stroke". The flyback stroke occurs at or A i 1
shortly after the instant of glottal closure. éfig
L &
Given the accelerometer signal, the FPRD method locates the zero crossing R
associated with the flyback stroke by identifying signal maxima and minima and flﬁ
using heuristics, and provides pitch-synchronously a pitch value and a voicing fjij
confidence level. The latter quantity takes the integer values 1 to &, with 1 f: f.{;
indicating least confidence and 4 indicating most confidence. . f;g
]
We make several observations. First, the FPRD program was developed - A
originally for making pitch period and jitter measurements [16]. Second, this - gié
method is being used in a computer-based system of speech-training aids for :2 ;?

the deaf {17, 18]. Experience gathered in this application has suggested that

fatase 4k afogat A g

et
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" Fig. 2 (a) Signal from audio microphone 10 cm from lips,
vowel [a].
(b) Simultaneous signal from an external accelerometer
attached to the throat just below the glottis.

(Figure taken from [16])
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the FPRD algorithm operates reliably over a range of subjects including adult

males, adult females, and children. Third, notice that the FPRD algorithm

does not provide the binary (voiced/unvoiced) voicing decision required by

5 most narrowband vocoders. Fourth, the accelerometer is essentially

P'.

*: insensitive to acoustic background noise at low frequencies and only mildly
sensitive at high frequencies. This property implies that the FPRD algorithm

= can be used to extract accurate pitch even in acoustic background noise. In

fact, as part of another BBN project, the accelerometer has been used in
conjunction with a noise-cancelling microphome to transduce noise~immune
séeech signal [19, 20]. 1In the same project, it has been found that of the
various accelerometer positions on the head and neck, the position just below
the glottis provides the highest spectral amplitude at frequencies around the

pitch frequency, which makes this position best for pitch extraction (19, 20].

We obtained a listing of the source FPRD program from Henke. The program
was in a structured high-level processor language that was not available to
us. Fortunately, we received a Fortran version of the FPRD program from
C. Gillman at the University of Wisconsin. We brought up this program on our
VAX/VMS computer by making the required Fortran syntax changes and by
incorporating our file input/output software. The FPRD program requires the

user to specify two input parameters: the speaker”s average pitch frequency
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in Hz and the accelerometer signal polarity (see Section 5.2). We initially
tested and debugged the program using the speech signal as input, even though
the program was designed for the subglottal signal input. We processed the
same speech file through our program and through the original FPRD program at

MIT. The outputs from the two runs were found to be identical.

5.2 Voicing Decision and Time-Synchromous Pitch

We interpreted the voicing confidence level output from the FPRD program
as follows: A value of 1 indicates a "definitely unvoiced" period; a value of
4 indicates a "definitely voiced" period; and values of 2 and 3 indicate
‘ transition periods. We mention that for a confidence level of 1, the FPRD
program provides as pitch estimate the average pitch period. (Recall that the

average pitch frequency is one of the user-specified inputs.) To check the

[ 4 validity of our interpretation given above and to develop a technique of
assigning a binary voicing status to the transition periods, we processed

through the FPRD progrin five sentences of the accelerometer signal from a

TN AR
b b g

male speaker. The accelerometer signal and the speech signal were previously

recorded simultaneously on a two-channel tape recorder and digitized using our

2

two-channel A/D facility as part of another contract effort at BBN [19, 20]. :‘ﬂ

- A visual display of the accelerometer signal and the speech signal was ]

1
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: 38

.
e
. .
AR
'.'."'"'0
L)
.o'l'l.l o b
PY W . \

"ot
a el al.a

.....................................................

. . L RN P I . . et T el e D PR N T SRS W .
- .. - .- AR A . St et e et et e L SRR o e e e A -
2P DY ol LIPS : PRE TP Py PALEPAL I AR T AN TR T Y PRV WA AT TR T LA, R R R S D A S S L D S AP,




Cadiiauist anii o/iih it aviai-nsth s o T T — P i e e Eagairagi —

Report No. 5726 Bolt Beranek and Newman Inc.

examined to determine the locatiom of the glottal events specified by the FPRD
program output and to identify the correspondence between the accelerometer
signal and speech signal events. An example of the display is shown in
Fig. 3. The waveform at the top of the figure is a section of the
accelerometer signal, and the corresponding section of the speech waveform is
shown at the bottom of the figure. The FPRD program positions the epoch
boundary at the zero-crossing of the "flyback stroke". The arithmetic sign of
the slope of the "flyback stroke" in the accelerometer signal determines the

signal polarity parameter referred to earlier in Section 5.1.

The results of the foregoing investigation confirmed the validity of our
interpretation of confidence levels 1 and 4 as, respectively, uanvoiced and
voiced. For level 4 cases, the pitch estimates from FPRD were found to be
quite accurate. Also, we identified a simple method of assigning a binary
voicing status to the transition periods: Declare all tramsition periods that
occur in the middle of an unvoiced region (a region with consecutive
confidence levels of 1) as unvoiced and declare all other transition periods
as voiced. The voiced transitiom periods can thus occur immediately
preceding, succeeding, or in the middle of a voiced region (with consecutive
confidence levels of 4). We hasten to point out that this simple rule worked

well over the five sentences we investigated, but caused some voicing errors
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Fig. 3 Waveforms of the accelerometer and speech signals.
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over a larger speech database used in our formal subjective tests.

Refinements to the voicing decision rule are given in Section 6.2.

We incorporated into the PEVAL program a subroutine to determine the
binary voicing decision for the FPRD pitch and to convert the pitch-
synchronous pitch data to time-synchronous (or frame-by-frame) data at a frame
rate specified by the user. This subroutine determines the pitch value for a
frame as the pitch-synchronous pitch period that occurs at the center of the
frame. Notice that it does not perform any interpolation. We refer to the
resulting time-synchronous FPRD pitch data with binary voicing decision as
FPRDM (M stands for "modified”) pitch data. It is the FPRDM pitch that we

used in all our subsequent subjective and objective evaluation work.

We processed the foregoing five sentences of speech through the HDV coder
twice, once using the AMDFD pitch and once using the FPRDM pitch. Through
informal listening tests, we found that the FPRDM pitch produced more natural-

sounding speech than did the AMDFD pitch.

41

P S P S A U AT U




Report No. 5726 Bolt Beranek and Newman Inc.

5.3 Performance with Speech Signal as Input

To test how well the FPRDM program extracts pitch with apeech signal as
input, we processed the six TI sentences (see Sectiom 4.1) through the FPRDM
program with 10-ms frame size and compared the resulting pitch data, using
PEVAL, with the reference TI hand-edited pitch data. The error results are

given in Table 4.

Error EPRDM
Percent VUV Error 15.53
Percent UVV Error 0.05
Percent Gross Error 3.42
Total Error 19.00
Pitch Doubling 0.00
Pitch Halving 0.10
Fine Error Mean 0.95

TABLE 4. Pitch and voicing error rzsults obtained over the six TI
sentences, for FPRIM.

Comparing the results given in Table 4 with those given in Table 3 for

six other pitch extractors, we find that the VUV error was unacceptably large
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for FPRDM. All other error measures were in fact quite low for FPRDM. To

examine the VUV errors caused by FPRDM in more detail, we observed visual » ;f
displays of several speech waveforms and noted the locations of wvoicing
transitions. The observed transition locations were compared with the pitch-
synchronous voicing confidence level outputs of the FPRD pitch extractor.
These comparisons showed that the FPRD pitch extractor yielded a confidence
level of 1 or a definitely unvoiced decision for several moderate and low
energy regions of voiced speech. We synthesized several sentences with the
HDV coder using the FPRDM speech-derived pitch as input. Informal listening
tests showed that the speech for FPRDM pitch was more natu;al in voiced
regions than speech for AMDFD pitch. BHowever, many raspy and hoarse-sounding
effects were present in the speech for FPRDM pitch confirming the presence of = -
obvious voicing errors. The overall speech quality produced by the FPRDM :
pitch was better than that produced by the Harmonic-Sieve pitch, even though

the total error was larger for FPRDM than for Harmonic-Sieve (19.0 vs 15.6). -

We emphasize that the FPRD program was not designed to us: the speech
signal as input. We believe that the performance of the FPRDM program on the -
speech signal can be improved substantially using a better (perhaps a R :ﬁ

separate) voicing detector.
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6. FORMAL SUBJECTIVE EVALUATION OF PITCH EXTRACTORS

Below, we present in Section 6.1 our design of the speech database for
use in subjective and objective evaluation of pitch extractors. In Section
6.2, we describe the genmeration of the reference pitch data using FPRDM and
the test pitch data using the five pitch extractors reviewed in Chapter 3.
The design of the subjective tests is treated in Section 6.3, and the results

from the subjective tests are presented in Section 6.4.

6.1 Speech Database

‘i.‘he acceptability of a pitch extractor for use in the LPC or HDV coder
depends on the frequency with which it generates pitch or voicing errors that
degrade the perceived quality of the coder output speech. For reliable and
efficient testing of pitch extractors, the speech database used must therefore
contain a substantial number of speech events that are likely to generate
pitch and voicing errors. Test utterances that fail to create pitch and
voicing errors do not provide useful data for classifying and comparing
candidate pitch extractors, and should therefore be excluded from the
database. In developing a speech database, we must also use properly chosen
speakers. The pitch range of the speakers is an important factor [21]. Also,

it has been our experience and the experience of others that some voices
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present severe difficulties to pitch extractors.

To determine the speech utterances and speakers that are likely to
generate pitch and voicing errors, we processed speech through the real-time
LPC-10 coder running on the MAP-300 array processor [4] and evaluated the
presence of pitch and voicing errors by listening to the coder output. As
speech material, we used a subset of a phoneme-specific database of about 120
sentences developed as part of an earlier BBN project [5]. We used a number
of speakers and three listeners in this investigation. Sentences containing
unvoiced consonants. caused most pitch and voicing errors: presence of
unvoiced stops was particularly effective in causing errors. Sentences with
only voiced consonants caused the fewest errors. Using the results of this
test, we chose a set of 51 sentences. We selected 12 male speakers and 12
female speakers with a wide range of pitch. We recorded the accelerometer
signal and the speech signal using a two-channel tape recorder as each of the

24 speakers read the 51 sentences.

To begin selection of the final database, we first informally listened to
all of the sentences spoken by all of the speakers processed through the real-
time LPC-10 coder. On the first pass, we selected, for each speaker, the

sentences that caused noticeable pitch or voicing errors. On the second pass,
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we evaluated the severity of the errors for only the sentences selected in the

first pass. From this information we were then able to select the six ;:';'1
1

speakers who produced the most (and most severe) errors. An additional
criterion we used in selecting the speakers was to span a wide range of pitch,
E : from low-pitched males to high-pitched females. The six speakers we selected

are 3 females (LW, BF, and MA) and 3 males (AW, DG, and PH).

The £inal step in the database selection process was to find the

sentences for these speakers that caused the most pitch and voicing errors. “ P
To enable us to make direct comparisons among the speakers for specific ‘
utterances, we selected sen.tences that caused errors for all six chosen ___‘
speakers. We also selected sentences each containing only specific types of "
speech sounds, in the hope that these sentences would cause different types of _3
pitch errors to occur. In addition, we selected, for each speaker, two to ?
four other sentences that caused errors specifically for that speaker. The :_“:
final datebase we selected contains a total of 50 sentences. The first six ';:"'-3
sentences given in Table 5 were recorded from all six speakers and the

remaining sentences were recorded only from the speakers identified within -,

parentheses.

After selecting the database, we digitized the speech and accelerometer -
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N Sentence Iype of Sounds
N 1. Why were you away a year, Roy? Voiced ) i}
2. Patty cut up a potato cake. Unvoiced stops - .
3. Which tea party did Baker go to? Stops, affricates IR
- 4, Chip took a picture. Unvoiced stops, affricates
[ 5. Whose shaver has three fuses? Fricatives
3 6. A thickset officer pitched out her hash. Unvoiced
7. Take a copy to Pete. (AW) Uavoiced stops
8. Pat talked to Kitty. (AW,LW) Unvoiced stops
9. Keep quiet at church. (BF,MA,PH) Unvoiced stops, affricates _
10. Katie typed a paper. (BF,MA) Unvoiced stops .
11. Peter took out a potato. (DG,LW) Unvoiced stops B
12. Teacher taped up a packet. (DG) Unvoiced stops, affricates -
13. Teacher patched it up. (DG) Unvoiced stops, affricates :
14, Quite quiet at church. (PH) Unvoiced stops, affricates i
15. A thief saw a fish., (PH) Fricatives =
TABLE 5. Sentences used in the speech database. - i
.
signals for the selected sentences using a two-channel digitizing technique, .
which preserved the time-alignment of the two signals. The resulting waveform N
files were then edited and split into two files: ome containing the speech e

signal and the other containing the corresponding accelerometer signal.

We then proceeded to add digitally ABCP noise to clean speech sentences
to generate the noisy speech database. From the sponsor-supplied tape
containing sentences of speech recorded in an ABCP noise environment, we t:

digitized the noise-only parts and digitally "spliced” these together to
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obtain ome long noise file with about 7.5 seconds of noise. We listened to
this file to verify that it did not contain any obvious repetitious patterns
or pops and clicks because of the splicing process. The noise file sounded

about the same as we heard on the sponsor”s tape.

We added the ABCP noise to individual speech sentences to obtain a
prespecified signal-to-noise ratio (SNR), as follows. We computed the average
per-sample energy of the noise. For speech, we computed per-sample energy in
10-ms frames over the given sentence, identified the frames with energies
above the 90th percentile, averaged the peak energy over these frames, and
subtracted a constant (we used 5 dB) to obtain a.robust estimate of the
average speech signal energy. This method is robust as it is not as sensitive
to the presence of pauses and silence in speech as is the overall average
energy. From the per-sample average energies of the noise and the speech
files, we scaled the noise go as to produce a specified SNR over each

sentence.

We added the noise to several utterances from our speech database with
various SNR's and performed informal listening tests to decide which SNR best
matched the SNR of the sentences on the sponsor’s tape. We found that an SNR

of 7 dB gave the best match. Upon adding noise to several test utterances we
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noted that the adjustment of the noise level for each utterance, to maintain
the SNR of 7 dB, caused small changes in background noise from sentence to
sentence that could be perceived in informal listening tests. In an actual
ABCP noise environment, the noise level would not change as speaking levels

changed. We therefore decided to add a fixed noise level to all sentences.

This fixed level was obtained by averaging the noise levels required to
produce a 7 dB SNR for a number of sentences. We thus generated a 50-sentence

ABCP noise-added speech database.

6.2 Generation of Reference and Test Pitch Data

We generated pitch files for the two sets of 50 sentences of speech
corresponding to the clear and noisy databases, for each of the five pitch
extractors: AMDFD, Gold, Harmonic-Sieve, ILS, and JSRU. We used a frame rate
of 50 frames/s required by the 2.4 kbit/s LPC and HDV coders. We then
generated the pitch-synchronous pitch data using the FPRD program on the
accelerometer signal files for the 50 sentences of speech, and converted the
data, using PEVAL, to time~synchronous pitch and voicing data (FPRIM),
initially at 10-ms frame size. We treated the resulting FPRDM pitch data as
reference in both clear and noisy cases; this is quite reasonable as the

accelerometer is essentially insensitive to acoustic background noise. In the
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rest of this section, we describe how we carefully examined the FPRDM pitch
data and made necessary refinements. For each of the 50 sentences, plots of
the speech signal, accelerometer signal, and the frame-by-frame pitch
estimates were examined to locate any pitch and voicing errors. High
resolution plots were made of voiced regions where the pitch changed rapidly
and also of several steady state voiced regions. These plots were used to
check the accuracy of the extracted pitch estimates. The confidence level
output from the FPRD program and the binary voicing decisions made by our
conversion routine were compared with events in the speech and accelerometer

signals. We also performed informal listening tests to compare the original

speech utterances with synthesized ones that were produced using the FPRDM

pitch in the LPC coder. From these tests we concluded that the frame-by-frame
FPRDM pitch data was correct for 23 of the 50 sentences in our database. We
found at least one instance in each of the remaining 27 sentences where the

pitch accuracy or a voicing decision could be questioned.

The utterances that contained errors were reexamined to determine if
there were any common characteristics or patterns to the errors that could be
detected and corrected by modifications to our conversion routine. Although
several types of errors were identified and techniques for correcting them

vere devised, we were not able to develop, within the scope of this project, &
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- fully automatic method for obtaining error-free frame-by-frame pitch and
ii voicing decisions from the FPRDM pitch data. Several of the refinements we
made to the conversion routine were implemented as options so the user could
select the correction techniques that were appropriate for the sentence under
examination. Three techniques for making refinements to the voicing decisionm,
discussed below, can be readily included in the automatic conversion routine.

The details of the error types and our correction methods are given below.

From our study, we found that accurate frame-by-frame pitch estimates
were obtained from the pitch periods classified as '"definitely voiced"
(confidence 1level 4). Errors in the frame-by-frame pitch estimates were
obtained only when the tramsition state pitch periods (confidence levels 2 and
3) were used for frame estimates. Recall that our conversion routine
considers all transitions state pitch periods as voiced if they occur at the
beginning, at the end, or in the middle of voiced regions. The pitch values
associated with confidence level 3 were generally reliable; however, the level
2 pitch periods were not. Approximately half of the level 2 tramsitiom pitch
periods were in error. We modified our conversion routine to substitute the
previous level 3 or level 4 voiced pitch period value for each level 2 pitch
period that was declared voiced. This scheme worked well for transition state

pitch values that occurred in the middle of voiced regions, but was not
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appropriate for many of the transition state pitch periods at the end of
voiced regionms. It was necessary to hand-edit the pitch estimates at the end

of several voiced regions.

Most voicing decision errors were caused by inappropriate classification
of transition periods by our conversion routine. Regions declared as
definitely voiced (confidence level 4) or definitely unvoiced (confidence
level 1) were almost always correct. A majority of the voicing decision
errors occurred when transition state pitch periods were at the beginning or
end of a voiced region. Three modifications were made to the conversion
routine to correct a number of the voicing decision errors. First, we noted
that if an isolated confidence level of 1 existed at the end of a voiced
region followed by a sequence of three or more transition state pitch periods,
the transition periods and the isolated level 1 frame must be declared voiced.
Second, we also noted that several short voiced regions were not detected by
the FPRDM program. Reexamination of the FPRD data showed that each of these
regions contained a consec;xtive sequence of three or more level 3 pitch
periods. A provision was added to our conversion routine to declare these
regions voiced. Third, we declared any isolated unvoiced frames as voiced
with pitch taken from the immediately preceding frame. By application of

these three correction methods, we were able to correct approximately 802 of
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: 5
o the voicing decision errors. The remaining voicing errors (about 25 in )

- number) were corrected by hand-editing the pitch files. o

All pitch and voicing errors in the 27 utterances were corrected, either
by selectively applying the schemes described above or by hand-editing the
pitch files. The resulting FPRDM pitch data was used as reference pitch in

e our subsequent work.

The above discussion might indicate that we made an extensive hand- ’
editing of the FPRDM data. This is simply not true, as will be clear from the
facts presented below. First, as we mentioned above, 23 of the 50 sentences .
did not require any corrections at all. Second, we used the PEVAL program to - .
evaluate the FPRDM pitch data before any corrections were made, with the
corrected FPRDM data as reference. For a total of 8,290 10-ms frames analyzed ;;:::iﬁ
(82.9 seconds of speech), we obtained 93 VUV errors, 37 UVV errors, and 1l -- ;-;
gross pitch errors including 1 pitch frequency doubling and 4 pitch frequency |
halving errors, which represents a total error of only 1.7% errors. In . 1
contrast, the five test pitch extractors produced over the six TI sentences - - :
total errors in the range of 1l to 162 (see Table 3). (The errors were even e
larger over our speech database. See Table 6 in Chapter 8.) Third, as we :f.: :
mentioned above, three techniques to correct the errors in the voicing -
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decision can be readily incorporated into the automatic comversion routine.
We implemented these techniques as part of our automatic conversion routine
and evaluated the resulting FPRDM data over the 50 sentences. The resulting

total error was 1.48%.

The primary motivation for our above-described detailed examination of
the FPRDM data was to ensure that it could be used as an accurate reference in
our objective evaluation of pitch extractors. We believe that either the
original FPRDM data or the ome with the additional automatic voicing decision

changes would serve well as the intended reference.

6.3 Subjective Tests

We decided to conduct formal subjective tests on 2.4 kbit/s LPC and HDV
coders using each of the six pitch extractors (AMDFD, FPRDM, Gold, Harmomic-
Sieve, ILS, and JSRU), which leads to a total of 12 coding systems. We also
considered two acoustic background noise conditions €clear and ABCP noise) for
each coding system. From our 50-sentence speech database, we chose for the
subjective tests a total of 48 sentences: 8 sentences spoken by each of 6
speakers; six of these sentences are common to all speakers. (The design

described below requires that the total number of sentences be an integer
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multiple of the number of coding systems.) Use of pairwise comparisons of the
1152 test stimuli (12 coding systems x 2 noise conditions x 48 sentences)
would be a formidable task indeed. We therefore decided to adopt a rating
test in which a listener rates the overall speech quality of each test

sentence on an 8-point scale, with 1 being the worst speech quality and 8

being the best speech quality. It is desirable to limit the duration of each
test session to be within 2 hours; otherwise, listeners tend to become tired,

loose concentration, and not be consistent in their rating. Guided by this

consideration, we decided to run two separate tests, one for clean speech and
l; the other for ABCP noise-added speech.’ Each test contains 576 (= 12 coding

systems x 48 sentences) stimuli, arranged in 12 blocks as explained below.

Since we expected that speech quality differences over the different

pitch extractors might often be small, we decided to employ listeners with at

least some prior experience in listening to LPC speech. We chose eight people

from the BBN Laboratories Speech Group to serve as subjects; two of these

Wt e
e a4y

eight were closely involved in the preparation of the test stimuli. Since we

believe that a dozen or so judgments per stimulus are needed to obtain —
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L
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reasonable average ratings, we decided to run four test sessions for each -
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judgments from each of eight subjects or a total of 16 judgments, which should
be sufficient. Considering the order in which to run the clean speech tests
and the noisy speech tests, we decided to divide the eight subjects into two
groups of four subjects each, with the first group going through the four

tests, each test run on a different day, in the order Clear I, Noise I, Noise

I1I, and Clear II, and the second group in the order Noise I, Clear I, Clear
II, and Noise II. Clear I and Clear II (similarly Noise I and Noise II)

involve the same 576 stimuli but use different randomized ordering as

discussed below. From the test results, we can evaluate the effect of the

ordering of the clean speech and noisy speech tests on the ratings of the

listeners. Also, by comparing the Clear I and Clear II as well as the Noise I
and Noise II ratings, we can determine how reliable (or consistent) the

subjects were in their ratings.

Next, we discuss the method we used for randomizing the order of the test
stimuli. The block of 48 sentences (6 speakers x 8 sentences) were first
divided into four sub-blocks of 12 sentences each. Each of the 12 sentences
in a sub-block was assigned to a particular coding system. We then randomized
the ordering of sentences in each sub-block so that no two consecutive
sentences were spoken by the same speaker. This randomized ordering made up

the first test block of 48 stimuli (4 sub-blocks x 12 sentences). Next, the
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coding system ordering was rotated so that the system that was assigned to the
first sentence of a sub-block was assigned to the second sentence, the second — :&
to the third, and so on. The 12 sentences from each sub~block were then

randomized to gemerate the second block of the test. We repeated this

procedure until 12 test blocks were produced, so that all 48 sentences -
processed by all 12 systems were included. For Clear I and Noise I test
tapes, we used different randomization within blocks. We then randomized the
ordering of the blocks in the Clear I and Noise I cases to obtain,

respectively, the Clear II and Noise II test data.

Finally, for each test, we repeated the first block at the end of the
test tape so that each test tape had 13 blocks. The listeners were instructed
to ugse the first block of 48 test sentences in familiarizing themselves with

the rating task and with the range of speech quality to be mapped on to the 8-

point rating scale. The ratings from this practice block were not used in our - -
analysis.
Using the previously generated pitch files, we generated synthesized - -

speech for our formal listening tests. Each of the chosen 48 test sentences
was synthesized using each of the two 2.4 kbit/s coders (HDV and LPC), each of

the pitch files (AMDFD, FPRDM, Harmonic-Sieve, Gold, JSRU, and ILS), and each -
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noise condition (clear and ABCP noise), resulting in 1152 distinct test

stimuli. We then prepared test tapes as mentioned above. As we informally

! ;l listened to the tapes to check if everything was right, we discovered that we
L had inadvertently substituted, for one of the speakers, the sixth common
i . sentence (see Section 6.1) with a different sentence. In other words, the
tapes contained all six common sentences from five speakers and only five from
the sixth speaker. Finally, we ran the four tests for each of the two groups

k !, of subjects.

Before we present the test results, we must point out that we

inadvertently used an incorrect time delay of 60 ms (or three 20-ms frames)
for the Gold pitch detector. This led to the Gold pitch extractor”s inferior
subjective ratings reported below in Section 6.4 and inferior objective scores

reported in Chapter 8. (See Subsection 8.1.1 for further discussion).

6.4 Test Results

We entered all subjective rating scores into an interactive software
facility called RS-l (a product of BBN Software Products Corporation). The
analyses described in this section were performed using the RS-1 system. The

plots included in this section were also produced by the RS~1 system.
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At the outset, we examined the mean rating score and the standard

deviation for each of the eight subjects in each of the four test sessions. _~ 4
The first group of four subjects took the tests (on consecutive days, each
test on a different day) in the order Clear I, Noise I, Noise II, and Clear
II. As expected, the Clear II mean ratings were in general higher than those
for Clear I because the subjects had heard the day before the poorer quality
Noise II speech. The second group of four subjects took the tests in the
order Noise I, Clear I, Clear II, and Noise II. Since a weekend separated the N )
last two tests, the Noise II mean ratings were not lower than those for Noise

I. The mean score and standard deviation varied significantly over subjects

and sessions. Therefore, we decided to normalize individual rating scores by
subtracting the mean and dividing with the standard deviation computed over Eaal.

the respective subject and session. Next, each subject made two ratings of
each stimulus sentence. To assess each subject”s reliability, we correlated
the two sets of ratings over the 576 stimulus sentences. One subject for the --
clear condition and three subjects for the noise condition did not produce »
large enough correlation. We therefore discarded the data from these

subjects. The correlation coefficients for the remaining subjects ranged -
between 0.71 and 0.84. In the rest of our analysis, we thus used 7 subjects "l
(14 ratings per stimulus sentence) for the clear comdition and 5 subjects (10

ratings per stimulus sentence) for the noise conditiom. Also, in computing
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- e o

the mean scores, we used the average of each subject’s two ratings for each

stimulus sentence.

Before we present the results comparing the two coders and the six pitch
E : extractors, we mention that subjects were instructed to use the full 8-point S
rating scale in each test session. Therefore, we caution that the ratings for
the noise condition must not be directly compared with the ratings for the
clear condition, since subjects were expected to assign different speech -ﬁ
quality values, under the two conditions, for a given score. Below, we first

present the mean score results over the 48 speaker-sentence combinations and

then present the mean score results over the six common sentences for each

"~
)

speaker and over six speakers for each sentence.

AP
LI

Figure 4 shows a bar chart of the mean rating scores over all 48

-
i

sentences and over all subjects, comparing the six pitch extractors under each
of the four coder conditions: HDV/Clear, LPC/Clear, HDV/Noise, and LPC/Noise.

From Fig. 4, we see that the reference pitch FPRDM was judged to be the best

- for the HDV coder or the LPC coder, under the clear condition or in ABCP ~ -
noise. In fact, all subjects were in agreement on this point. This result is

f‘_'_: obviously important for our work on the objective evaluation of pitch :'_:f
extractors, since it validates our use of the FPRDM pitch as reference. L -

B
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FIG. 4. A bar chart of the mean subjective rating scores, comparing the six pitch )
extractors under each of the four coder/noise conditionms.
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Considering the remaining five pitch extractors and the clear condition, we
see from Fig. 4 that the AMDFD algorithm produced the best overall speech ”gié
quality for either of the two coders, with the JSRU method being slightly
worse. All seven subjects preferred AMDFD over JSRU for LPC/Clear; 5 subjects
preferred AMDFD over JSRU, one had no preference, and one preferred JSRU over ‘ ¥:
AMDFD, for HDV/Clear. The relative ordering of the five pitch extractors for

both LPC and HDV coders was, from best to worst, AMDFD, JSRU, ILS, H~S, and

Gold. Considering the ABCP noise condition, we observe from Fig. 4 that the ': c.

.
JSRU method was far superior to the other four pitch extractors. All five b
subjects were in agreement on this point. The relative ordering of the five Lo
pitch extractors was JSRU, ILS, AMDFD, H-S, and Gold for LPC/Noise and JSRU, ;;;;
ILS, AMDFD, Gold, and H-S for HDV/Noise; AMDFD was only slightly worse than !w;j

ILS.

Next, we consider the comparison of the HDV coder with the LPC coder. We
note that the sentences included in the subjective tests were designed to

challenge the pitch extractors and thereby expose the differences among them.

These sentences, however, are not particularly suited to demonstrate the
speech quality differences between the HDV and LPC coders. The results we
obtained were, therefore, mixed in this regard. To make the LPC/HDV

comparison a little easier, we have replotted the bar chart in Fig. 5, which
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shows the comparison for each pitch extractor. We repeat the caution that we

must compare HDV/Clear with LPC/Clear and HDV/Noise with LPC/Noise and not
compare between clear and noise conditions. We see from Fig. 5 that the HDV
coder was slightly better or about the same as the LPC coder for all but the
Gold pitch extractors under the clear condition and that the LPC coder wvas
slightly better or about the same as the HDV coder for all five pitch
extractors under the noise condition. (The difference between the two coders
in the latter case was, in fact, large for H-S.) For the accurate FPRDM pitch
and considering the common six sentences 1-6 (se Table 5), we found that the
HDV coder was better over the sentences 1, 5, and 6 and that the LPC coder was
better over the sentences 2-4; this result was valid for both clear and noise
conditions. Sentences 2-4 contain a number of stops and rapid transitionms.
We believe that the inferior performance of the HDV coder was in part due to
the lower average transmission frame rate employed by the HDV coder (see

Section 2.2).

Next, we present the results examining more detailed aspects of the
subjective rating data. For this discussion, we have combined the results of
the HDV and LPC coders, since the two coders produced similar results as
mentioned above and since combining them makes the plots more readable. Also,

for computing the mean ratings, we have used, unless said otherwise, only the
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data from the 36 speaker-sentence combinations involving all six speakers and
% the six common sentences. We have included the FPRDM results in plots given
g below only as a reference, and we make comments on the relative performance

for the other five pitch extractors onmly.

Figures 6 and 7 depict the mean scores for each speaker (we averaged over
the six common sentences and all subjects) for the clear and noise conditions,
respectively. From Fig. 6, we see that all pitch extractors perfémd poorly
on speaker LW (female) and well on speaker BF (also female). The low-pitched

male speaker DG was a problem for H-S and AMDFD, but not so for others. Each

pitch extractor has its own wmost favorite and least favorite speskers as
illustrated in Fig. 6. Looking at the range of variation of the mean score, -
which is a measure of robustness over speakers, we find that AMDFD and Gold
exhibit the smallest range, H-$ exhibits the largest range, and ILS and JSRU
exhibit a nearly equal range between these two extremes. We can make a -—
similar set of comments on the plots shown in Fig. 7 for the noise conditionm.
We observe that all pitch extractors performed substantially worse on speaker
LW, with AMDFD failing severely. The high-pitched male speaker PH was a -

problem for Gold and H-S, but not so for others. The range of mean scores vas

large for all pitch extractors.
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FIG. 6. Mean subjective scores for each speaker, under the clear condition.
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’ Next, we consider the performance of pitch extractors as a function of

the speech material. Figures 8 and 9 display the mean scores for each of the

-
common sentences 1-6 given in Table 5 (we averaged over all six speakers and

. all subjects) for the clear and noise conditions, respectively. Each pitch

extractor has its own most favorite and least favorite sentences. From

oo Fig. 8, we see that the all-voiced sentence 1 produced good results for all

; but the H-S and AMDFD pitch extractors. The Gold pitch detector performed

! I particularly poorly on sentences 4 and 6. The range of mean scores was

E smallest for AMDFD and largest for Gold. From Fig. 9, we note that AMDFD

o .

E , performed quite poorly on sentence 2. The range of mean scores was smallest

‘ l for H-S and largest for AMDFD.

o Since the results presented above show AMDFD and JSRU to be the two best
- pitch extractors, we have plotted the mean scores for them and FPRDM against
- the 48 speaker-sentence combinations in Figs. 10 and 11, for the clear and

) noise conditions, respectively. We see from Fig. 10 that AMDFD performed

]

[- quite poorly on the sentence DGl, as also noted above, but otherwise AMDFD’s
- ratings were generally better and varied over a narrower range as compared to

;o JSRU”s ratings. Also, we see several sentences over which FPRIM”s rating was

L exceeded by the rating of either AMDFD or JSRU (e.g., DG5 and MAl). From
N

' Fig. 11, we readily see the inferior performance of AMDFD as well as its
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performance variation over a wider range. AMDFD performed poorly om at least
some of the sentences from all speakers but BF and MA, with its ratings being
the worst for speaker LW. Again, we see a few cases in which FPRDM’s rating

was exceeded by JSRU“s or AMDFD”s rating.

Using a separate statistical package available on our DECSystem~-20
computer, we performed two six-way analyses of variance, one for the clear
condition and one for the noise condition (speakers x sentences x coders x
pitch extractors x subjects x replications). We included in the analyses only
the six common sentences. The results show that both speaker and sentence
were highly significant sources of variance, but that the interaction of
speaker and sentence was much more significant than either. This means that
although there was some similarity among different sentences spoken by the
same speaker, and among different speakers saying the same sentence, it is
better to regard each speaker-sentence combination as unique. Therefore the
analyses were repeated, rep.acing the 6 speakers x 6 sentences dimensions by a
single dimension representing all 48 stimulus sentences. For both the clear
and noise conditions, all main effects discussed above were significant,
although the difference between the HDV and LPC coders only just reached
significance (P = 0.38 for clear; P = 0,49 for noise). The effect of subjects

was significant at about P = 0.0l. All the other main effects, and all of the
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interactions that included the stimulus sentences, were extremely significant

(P < 0.0001).

Considering again the comparison between the AMDFD and JSRU pitch
extractors, we restate the results that AMDFD performed better in the clear
and JSRU performed substantially better in ABCP noise. While there is onme
clear condition (admittedly, "clear" is not unambiguous), there are a number
of operational noise conditions. For example, the Department of Defense (DoD)
typically evaluates speech coder performance over the noise conditioms that
include ABCP noise, office noise, ship noise, and tank noise. As we evaluated
the pitch extractors only in ABCP noise, we do not have sufficient evidence to
recommend JSRU over AMDFD for the DoD applications, for example. Also, we
understand from a recent conversation with Tom Tremain of the DoD that version
45 of LPC-10 includes an improved AMDFD algorithm, which has produced better

intelligibility scores in noise.
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7. PERCEPTUAL EFFECTS OF PITCH AND VOICING ERRORS

T TR ML T S T, T T e,
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Pitch extractors can and do produce several types of pitch and voicing ;v:
errors at various locations within an utterance. To develop meaningful

objective measures for evaluating pitch extractors, it is necessary to

'
i\
(- s
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identify individual error types and patterns that create distinct perceptual

effects and weight them according to their influence on speech intelligibility
and quality. To identify and isolate the perceptual effects of individual

error types, we developed a program to introduce in a controlled manner
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specific errors of known magnitude and duration at specified locations in the
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reference FPRDM pitch comtour. We conducted an experimental study involving

’
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informal listening tests on the output speech of the LPC coder that used such

o
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perturbed pitch contours, to assess the perceptual effects of different types

X

of pitch and voicing errors and thereby gain some insight for developing
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e
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»
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objective pitch evaluation measures. In Section 7.1, we describe the program

we developed for generating perturbed pitch files. We present our

S

experimental results on the perceptual effects of voicing errors in Section

7.2 and of pitch errors in Section 7.3,
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7.1 Controlled Generation of Pitch and Voicing Errors

Our program for perturbing or corrupting the pitch in a controlled
manner, called CORPICH, has two parts. The first part collects
characteristics about an input utterance. These characteristics, in
conjunction with user-defined constraints, are used to specify regions of the
utterance where errors are permitted. The second part of the program

introduces pitch and voicing errors in these regions.

To obtain the required characteristics, the program reads the reference
FPRDM pitch data from a file. The corresponding speech file is also accessed,
and a frame~by-frame energy contour is computed. Voicing transitions are
located, and statistics of the pitch and energy contour are obtained.
Measures of the dynamics of the pitch and energy are also computed. The

details of these steps are given below.

The relative locations of the voicing transitions are specified at each
frame as the distance from the current frame to the last tramsition and to the
next transition. The distances are defined as a percentage of the current
region length and also as the number of frames. The distances are used to

position errors relative to the location of voicing transitioms.
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The statistics that are computed are the mean, standard deviation, and

median of the energy and pitch over the entire utterance. The median pitch

for each voiced region is also evaluated. These measures are used to position

the errors with respect to the realtive magnitude of the pitch and energy.

To determine the dynamics of the pitch or emergy in the neighborhood of a
given frame, we developed two measures: a "representative" slope, RS, which
indicates the direction and rate of change of the parameter (pitch or energy)
at each frame and a reliability factor, RF, which is a measure of the accuracy

of the slope. RF also indicates whether the contour is smooth or “moisy" in

AR Br S G S
PR wol.

the region. To obtain the two measures for either pitch or energy, the
parameter contour is 3-point median smoothed to remove outliers. At each
- frame a difference is computed between the next frame smoothed value and the

last frame smoothed value. Notice that this difference (referred to as

u smoothed difference below) represents the trend of the parameter over three
smoothed frames or over five unsmoothed frames. However, this measure is not
a good indicator of ﬁhe slope if the parameter contour is noisy. To obtainm

- information about the smoothness of the contour, two more differences

S (referred to as the umsmoothed differences below) are computed: the absolute

,'j_'f value of the difference between the last frame and current frame unsmoothed

= values and the absolute value of the difference between the next frame and the
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current frame unsmoothed values. The sum of the two differences is the total

change in the parameter over the three-frame interval. The reliability factor

-

RF is then defined as the absolute value of the ratio of the smoothed
difference to the sum of the unsmoothed differences. RF is a positive
E fraction with a maximum value of ome. An RF of unity implies that the
f smoothed difference is the actual slope of the parameter at the current frame
E’ and that the contour is smoothly varying. When either the numerator or the
denominator is zero, RF is computed as follows. If the sum of the unsmoothed
differences is zero, then the smoothed difference will also be zero indicating
that the parameter is not changing. RF is set to unity. If the smoothed

difference is zero and the unsmoothed difference sum is not, a peak or null in

the contour has occurred. To indicate the sharpness of the transition, RF is :d
computed as the reciprocsl of the unsmoothed difference. Once RF is computed, -
the representative slope RS is computed as the square of RF times the smoothed .
difference. -
After all the characteristics have been computed, errors are introduced
in the pitch data. The user specifies the errors to be introduced. The -
program permits a8 number of error categories including gross, fine (or ::; ,:
jitter), doubling, halving, VUV, UVV, a shift of the average fundamental, and s :ﬂ
a change in the variance of the pitch contour. For each error category, the = _ j
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user specifies one or more thresholds and parameters that control the
intensity, frequency, and relative location of the error. At each frame, the
pitch, the energy, the two measures of dynamics (RF and RS) for both pitch and
energy, and the transition location measures are compared against respective
thresholds. If all the quantities are within the user-defined bounds then a
pitch or voicing error is permitted. Other user-defined parameters, such as
the number of errors, are examined to determine if an error must actually

occur at the current frame.

In general, the pitch is corrupted using a single error category.
However, if more than one error category is chosem, the errors are created in
the following order. First, voicing errors are made at all designated frames
in the utterance. These frames are not modified by any subsequent processing.
Second, fine errors are introduced in all chosen frames in the utterance.
Finally, gross errors including pitch doubling and halving are introduced. A
gross error overcrides a previously defined fine error. If mean and variance
changes in addition to one or more of the above error categories are

specified, a second-pass processing of the pitch file is required.

We conducted a number of experiments to examine the perceptual effects of

specific types of pitch and voicing errors. For each experiment, we produced
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a set of perturbed pitch files with our CORPTCH program, by introducing
selected types of error at known locations in the reference FPRDM pitch
contour. The perceptual effects of these errors on speech intelligibility and
quality were then evaluated by informal listening tests of synthasis that used
the perturbed pitch files. We used the LPC coder for generating the
synthesized speech. For many of the experiments, only a small subset of
utterances from our speech database were tested. Consequently, the results of
these experiments, reported below, should not be regarded as conclusive, but
rather as indicators of the types of properties and characteristics that pitch

and voicing errors can exhibit.

7.2 Perceptuzl Effects of Voicing Errors

We conducted several experiments to assess the perceptual effects of
voicing errors. Our first experiment was designed to examine the effects of

VUV and UVV errors at transitions. These errors are quite common, since

correct determination of the voicing state at transitions is a difficult task
for most pitch extractors. For the test we used six utterances, one sentence B
spoken by all six speakers. The sentence, "A thickset officer pitched out her

hash", was chosen since it contained a number of tramsitions. For each of the

six sentences, four perturbed pitch files were created, each containing ome of
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the following error types: (1) a VUV error at the first frame of each voiced

h region, (2) a VUV error at the last frame of each voiced regiom, (3) an UVV
-

error at the first frame of each unvoiced regiom, and (4) am UVV error at the

last frame of each unvoiced region. The pitch frequency of the nearest voiced

b
L ..
i — frame was inserted in frames containing UVV errors.
3
b
3
h

Informal listening tests confirmed that voicing errors of just a single
frame in duration can'cause noticeable distortions in the speech. The speech
with VUV errors lacked clarity and crispness and was characterized as being
choppy, raspy, and noisy. The presence of UVV errors caused the speech to
sound slurred and buzzy. Some tomal or ringing effects were also noted in
these utterances. Listeners (we used up to three experienced listeners)
invariably found that UVV errors were not as objectionable as the VUV errors.
VUV errors at the beginning of voiced regions generally appeared to degrade
. the speech intelligibility and quality more than those at the end of voiced
. regions. Changing of essential perceptual cues at the onset of voiced regions

because of the presence of voicing errors could be responsible for this
— result., A similar result was obtained when we compared the perceptual effect
- of UVV errors at the beginning of unvoiced regions with that at the end of

unvoiced regions, although the difference in this case was less severe.

Judgments on the severity of the foregoing four types of voicing errors and
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their dependency on location differed greatly across the various utterances

and among the listeners. These differences might have been caused to some

extent by listener preference but largely because of the differemnce in the
energy of frames at which the errors occurred. The average energies of the
first and the last frames of unvoiced regions were approximately equal at 28.5

and 27.2 dB, respectively, whereas the average energies of the first and the

vy w',.,ﬁ,‘-w, -

last frames of voiced regions were higher at 42.7 and 35.2 dB, respectively,

g
[
L and differed by 7.5 dB.

A second experiment was conducted to examine the influence of frame

energies on the perceptual effects of voicing errors. VUV errors were tested
since the frames where they occurred contained the largest variation in "
energy. Two sets of perturbed pitch files were created. One set contained -
errors at the first frame of each voiced region only when the frame energy was -
above a threshold of 43 dB. The other set contained errors at the first frame -~
of each voiced region only when the energy was below the eame threshold.
Similar test data was also generated for VUV errors at the end of voiced
regions using an energy threshold of 35 dB. The thresholds used resulted in
approximately an equal number of errors in both the high and low energy

regions for most sentences. Informal listening tests indicated that errors at

high-energy frames al-says caused more adverse effects than those at low-energy _
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frames. From listening tests of various parts of sentences from the first
experiment described above, we were able to conclude that the severity of UVV

errors at transitions wvas also dependent on frame energies.

We conducted a third experiment to determine the effect of error location
and type when energy was not a factor. A single sentence was chosen that

contained several transitions with approximately the same energy levels and

vhere the energy changes across the transitions were small (a total of 7
transitions). VUV and UVV errors of a single frame duration at these
transitions were compared. The difference in the severity of the two error
types or the perceptual difference caused by location was rather small. These
observations seem to indicate that energy rather than error type or location
is the important factor. However, since only a single utterance was tested,

it is difficult to draw any sound conclusions from the test.

In all of the above experiments, only a single frame at each transition
contained a voicing error. We also examined the effect of VUV errors of two
frames in duration at each transition for the six~sentence database. The
resulting speech had a whispered quality that was quite obvious. This
observation indicates that the duration of the voicing error is an important

factor.
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Voicing errors in the middle of voiced and unvoiced regions were also
examined. Three test sentences were chosen that contained sections of voiced
regions where the energy dropped substantially for short intervals. Pitch
extractors have a tendency to cause VUV errors in these regioms. Listening
tests indicated that errors in these regions of a single frame in duration had
little or no effect on speech quality or intelligibility. However, if two or
more consecutive errors occurred, they did cause perceivable raspiness. From
the previous experiments it was clear that VUV errors at high-energy frames
would cause substantial degradation, so no further tests on these error types

were conducted.

To examine the effect of UVV errors in the middle of unvoiced regions, a e
single sentence was chosen; this sentence contained several unvoiced regions .- iéé
that differed substantially in emergy levels. Five perturbed pitch files were o F;f
created, each containing UVV errors in a different energy region. The five _~ -
energy regions were: below 10 dB, 10 to 20 dB, 20 to 30 dB, 30 to 40 dB, and ‘
above 40 dB. Errors of a single frame in duration in regions below 30 dB had

minimal effect on the speech. However, consecutive errors of 2 or more frames

caused the speech to be buzzy. All errors in the high-energy regions (above i; Li:

30 dB) produced audible effects. Errors in the highest-energy region caused . '}'
severe distortions that reduced the intelligibility of the speech. - i
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We summarize the results of our listening tests on -~7oicing errors as

follows:

o The effect of voicing errors (VUOV or UVV) is highly dependent on
frame energies; the higher the emergy of the frame at which an error
occurs the larger the perceived distortion.

o Errors that occur in two or more congsecutive frames are much more
audible than isolated frame errors.

o VUV errors cause raspy, noisy effects, whereas UVV errors cause
slurring and buzziness. UVV  errors are in general not as
objectionable as VUV errors.

0 Some evidence exists that errors at the beginning of voiced regions
cause more adverse effects than those at the end of voiced regions.

7.3 Perceptual Effects of Pitch Errors

We conducted several experiments to assess the perceptual effects of
pitch errors. From the different error measures and other output obtained
using the program PEVAL for the various pitch extractors (see Section 4.3), we
observed that many of the gross pitch errors occurred at the beginning and end
of voiced regions. Large variations in pitch can occur in these regions, and
most pitch extractors have a tendency to smooth these variations, which
produces poor estimates of the actual pitch dynamics. To examine these
issues, we chose twelve utterances, two sentences spoken by the six speakers,

and manually changed the FPRDM pitch values of up to three frames at the
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beginning and end of voiced regioms. To assure that only highly dynamic
regions were modified, only pitch values with a representative slope (RS) of
greater than 5X were changed. The pitch values were altered so as to yield a
flat pitch contour. A substantial number of the pitch changes resulted in

errors of 10 to 20X, and some errors were as high as 40 to 80%. Informal

listening tests indicated that many of the errors caused little or no effect o
on speech quality or intelligibility. Upon comparing these utterances with ;'
synthesis without pitch errors, we did find a few regioms that sounded

slightly monotone. In these regions, the pitch contour had a large and B -

consistent slope, and we had changed all three pitch values to yield a flat

A Mao
!

local pitch contour, thus altering the natural trend of the pitch contour.

These observations were surprising, considering the results we obtained for - el 4
. -

voicing errors in the same regions. -f:j-.:}
)

-—

Smoothing of rapid changes in pitch over short intervals (2 to 5 frames)

]

in the middle of voiced regions was also examined. Results indicated that

these errors also had little or no effect on speech quality oz

intelligibility. These observations indicate that smoothing of the pitch

contours (both reference and test) prior to objective measurement computations

may remove errors that are not perceptuslly significant and could result in

improved objective scores.
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Another experiment was conducted using s8ix sentences to examine the
effects of pitch errors in smooth or non-noisy regions of the pitch contour.
Errors of +4X were inserted in regions where the pitch contour was flat and
non-noisy. For each of the utterances, an equal number of errors were also
made in regions where the pitch contour was smoothly increasing or decreasing.
Simjilar test data with errors of +8% were also generated. Changes in speech
quality were noted in all utterances containing errors in the flat regions.
The speech was characterized as being more bubbly. The flat region errors of
+8% caused noticeable distortions in the dynamics of the pitch that were not
natural. Pitch errors of +4% in regions of increasing or decreasing slope
were not detectable, whereas errors of +81 caused some noticeable but not
unnatural changes in the pitch dynamics. 1In the latter case, the perturbed
pitch and the reference pitch produced natural-sounding speech, and there was
no clear preference between the two. The perceptual effects of errors in both
the flat and sloped regions were more pronounced for the female speakers and

vhen the errors occurred in several consecutive frames.

We summarize the results on pitch errors as follows:

0 Large pitch errors at the beginning or end of voiced regions may not
be perceptually relevant if they do not disrupt the natural trend of
the pitch contour over several frames.
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o Smoothing of short-duration rapid changes in the pitch coatour in the
middle of voiced regions may not degrade the speech quality and
intelligibility. This suggests smoothing of the test and reference
pitch contours before they are compared for objective evaluation. -

o The adverse effects of pitch errors are dependent on the magnitude of
the errors, the magnitude of the pitch frequency, the duration of L
errors, and the total number of gross errors. S ]

B 4
4
1

o Pitch errors in regions where the pitch contour is flat are more
noticeable than those in highly dynamic regions.

Again, wve wish to stress that the results presented above should be & i
viewed as empirical and should provide only general indications of perceptual A 4
relevance (as viewed through LPC synthesis) of pitch and voicing errors.

Objective measures that incorporate ome or more of the properties presented ——-L

above are described in the next chapter. ~- -
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8. OBJECTIVE EVALUATION OF PITCH EXTRACTORS

In this chapter, we describe a large number of objective measures we
developed and investigated for the evaluation of pitch extractors (Section
8.1); present the results we obtained by correlating the objective scores with
the mean subjective rating scores from our formal subjective tests described
in Chapter 6 (Section 8.2); and recommend a set of objective measures each of
wvhich produced consistently high correlation for both LPC and HDV coders,
under both clear and ABCP noise conditions, and in two evaluation conditionms,
one involving the complete database of 48 stimulus sentences (six speakers x
eight sentences) and one involving eight subsets of six stimulus sentences

each (Section 8.3).

8.1 Development of Objective Measures

In Subsection 8.1.1, we briefly review the basic objective pitch and
voicing error measures and present the results we obtained using these basic
error measures over the 48-sentence speech database. Subsection 8,.1.2
describes several methods of weighting the basic error measures, which we
developed using the results of our perceptual study given in Chapter 7. In
Subsection 8.1.3, we outline the procedure that we used in computing a large

number of objective measures.

SR SPTE A s

ST
. !




PP s S L T R e L G o = - e Y

Report No. 5726 Bolt Beranek and Newman Inc.

8.1.1 Basic Error Measures

As we mentioned in Section 4.2, there are three situations in which a
pitch extractor under test causes an error to occur; in terms of the voicing
status of the true or reference pitch and the test pitch, respectively, these
three situations are denoted as VUV, UVV, and VV. The basic error measure,
given in Section 4.2, for either VUV or UVV error type is the number of frames
containing the respective error type expressed as a percentage of the total
number of frames of data used in the evaluation. The VV case involves two
types of error, gross pitch error and fine pitch error; the associated basic
error measures are percent gross pitch error (i.e., percentage of the frames
containing gross pitch errors), finme pitch error mean, and fine pitch error
standard deviation. 1In our objective evaluation work, we used primarily the
three basic error measures: the percent VUV error, the percent UVV error, and
the percent gross pitch error, and the total error measure, which is the sum
of these three basic error measures. We have referred to these measures as
basic measures since they do not involve any form of weighting based on such

quantities as speech signal energy.

Before we describe methods of weighting the foregoing basic error

measures, we present the results we obtained using the program PEVAL and the
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basic error measures over the 48-sentence speech database used in our formal
subjective tests., The error results for the five pitch extractors under
evaluation are given in Table 6 for the clear case and in Table 7 for the ABCP
noise case. In computing the error results, we used a frame size of 20 ms (or
a frame rate of 50 frames/s) to correspond to the frame size used by both the
LPC and HDV coders, which provided the test stimuli. Pitch frequency doubling
and halving errors, which are included in the gross pitch etrof, are also

given in the tables as percentages.

rror AMDFD  Gold ;- ILS JSRU
Percent VUV Error 7.31 12.64 13.56 13.38 7.33
Percent UVV Error 2.25 6.61 1.04 0.73 2.50
Percent Gross

Pitch Error 4.66 4.52 8.87 2.44 1.90
Total Error 14.22 23.77 23.47 16.55 11.73
Pitch Doubling 0.25 0.08 1.32 0.00 0.00
Pitch Halving 0.05 0.60 0.67 0.55 0.50

TABLE 6. Basic pitch and voicing error results for the five pitch
extractors, computed over the 48-sentence clean-speech databage.
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Erxox AMDFD  Gold  B=S8 = IL§ =  JSRU

Percent VUV Error 18.28 29.61 7.15 32.79 26.32

Percent UVV Error 11.42 2.14 15.52 1.89 0.20

Percent Gross

Pitch Error 12.79 4.79 14.83 3.62 0.93

Total Error 42.49 36.54 37.51 38.30 27 .45

Pitch Doubling 0.08 0.03 1.39 0.0 0.0

Pitch Halving 6.59 2.46 3.65 1.89 0.25

TABLE 7. Basic pitch and voicing error results for the five pitch
extractors, computed over the 48~sentence ABCP noise-added speech
database.

From Table 6, we mote that the voicing error results for AMDFD and JSRU are
about the same and are considerably superior to those for the other three
pitch extractors. The two cepstral pitch extractors, ILS and JSRU, produced
the lowest gross pitch error. The JSRU algorithm also produced the lowest
total error. The rank ordering of the pitch extractors using the total error
as the criterion corresponds to the rank ordering by the mean subjective
rating score, with the one exception that the total error reverses the order

of the top two pitch extractors.
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X Table 7 shows that gross pitch error and total voicing error increased
i - substantially in noise, for all five pitch extractors. Because of the added
* ABCP noise, a substantially large number of frames were declared unvoiced
resulting in a large VUV error for all but the H-S pitch extractors. While
one would expect to see some reductiom in the UVV error for the same reason,
both AMDFD and H-S produced substantially higher UVV error in noise than in
clear. It is reasonable to assume that the higher UVV error was also
responsible for the higher gross pitch error for these two pitch extractors.
As in the clear case, the JSRU method produced the lowest gross error and the
lowest total error. Considering the rank ordering of the pitch extractors,
the total error is in agreement with the mean subjective score only as far as

the best pitch extractor is concernmed.

From a comparison of the results given in Table 3 for the six TI

sentences (see Section &4.3) with those given in Table 6 for our 48-sentence
database, we find that the total error givem in Table 6 is substantially
larger than that given in Table 3 for Gold and B-8S. A detailed examination
— uncovered the fact that we had inadvertently used an incorrect time delay of

60 ms (or three 20-ms frames) for the Gold pitch detector. We recomputed the

1S
'l '-‘
(.-

total error over the 48-sentence database, using different values of time

el

% delay as discussed in Section 4.3. A delay of 20 ms produced a total error of
-
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*

13.2%, and a delay of 40 ms produced a total error of 17.2%. Had ve used a
20-ms delay, the Gold pitch detector might have yielded substantially better
subjective rating scores than we reported in Section 6.4. To be consistent
with the already gathered subjective data, however, we continued to use the
60-ms delay for the Gold pitch detector in our subsequent objective evaluation
work. A similar recomputation of the total error for the H-S method indicated
that we had used the correct or minimum-error delay of 20 ms for this pitch

extractor.

g

8.1.2 Methods for Weighting the Errors

As mentioned above, we considered in our objective evaluation study three
types of errors: VUV error, UVV error, and gross pitch error. The basic or ;:
unveighted error measure for each error type assigns a value of one to each
occurrence of the error, computes the total value over the database, and
normalizes it by dividing with the total number of frames and multiplying with
100 (to get the result in percentage). The idea of weighting each frame error
is to reflect th; perceptual significance of the error in some manner, with
the expectation that the weighted error over the database produces a higher

correlation with the subjective rating scores than does the unweighted error. -

From the experimental results we reported in Chapter 7 on the perceptual .
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E f:: effects of pitch and voicing errors, we chose to investigate four methods of
i veighting: weighting based on the speech signal energy over individual

frames, veighting based on the duration of consecutive errors, weighting based

on the pitch frequency or the magnitude of the pitch frequency error, and

b

weighting that accounts for the context in which the error occurs. For each
veighting method, we conducted several initial tests to determine one or more
appropriate forms for the weight; in these tests, we computed the correlation
of the weighted error with the mean subjective scores (see Section 8.2) for
the evaluation of the different forms we considered for the weight. Below, we
describe the four weighting methods and indicate the form(s) we chose for the

weight, in each case.

The importance of energy weighting is clear from the results of our
perceptual study reported in Chapter 7. Our perturbation experiments showed
that pitch and voicing errors occurring in high-energy frames produced more
audible effects in the synthesized speech than those in low-energy frames did.
To emphasize errors at high-energy frames, we comsidered three forms for the
energy weight: the RMS value of the speech signal over a frame, the RMS value
in decibels, and the RMS value divided by the maximum frame RMS value over the

individual test utterance. Reference [10] uses the third form.
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From the results of our perceptual study of pitch and voicing errors, we
note that errors occurring in two or more comsecutive frames are substantially
more sudible than are isolated frame errors. To account for this duration
effect, we chose empirically the following weighting method: a weighting
factor of unity for isolated frame errors, a weighting factor of 1.5 for a
duration of two to five frames, and a weighting factor of 2.0 for a duration

of six or more frames.

For pitch-frequency weighting, the weighting factor we considered is
FR/FMAX for both VUV and gross pitch errors and FT/FMAX for UVV errors, where
FR is the reference pitch frequemcy, FT is the test pitch frequency, and FMAX
is the maximum permissible pitch frequency. We used FMAX=500 Hz. For pitch-
error weighting, the weighting factor we considered is (| FT~-FR |/FR)Y; we
used r=l. In our investigation, we used the above pitch-frequency weighting
for VUV and UVV errors and the above pitch-error weighting for gross pitch

errors.

The results of our perceptual study show clearly the perceptual
importance of context (or location) in which pitch and voicing errors occur.
There are three parts in our implementation of the context-dependent weighting

function. The first part, which was motivated by the observed perceptual
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significance of the voicing errors at unvoiced-voiced transitions (see Section
7.2), is to penalize the early and the late start of voicing in these
transitions. [Empirically, we chose a weight factor of 2 for the VUV errors
occurring in the first three frames of the voiced region and for the UVV
errors occurring in the last three frames of the unvoiced region, in any
unvoiced-voiced transition; we used a unity weight for all other voicing
errors. Second, we recall from Section 7.2 that large pitch errors at the
beginning and at the end of a voiced region and large pitch errors caused by
smoothing of short-duration rapid changes in the true pitch in the middle of &
voiced region did not produce significant changes in perceived speech quality
and intelligibility. We chose a weight of 0.1 for gross pitch errors
occurring in the first two and the last two frames of a voiced regionm,
provided that the local slope RS is greater than 10. We chose the same weight
for gross pitch errors in the middle of a voiced region, provided that the
reference pitch contour is noisy (RF < 0.5 and RS < 10). All other gross
pitch errors were assigned a weight of unity. The third part deals with the
threshold used in deciding if a pitch error is a gross pitch error or not.
The nominal value used for the threshold is 10%. In voiced regions where the
reference pitch contour is flat (RS < 4) and non-noisy (RF > 0.8), we lowered
the threshold to 5%, to account for the observed increase in listener”’s

sensitivity to pitch errors ia such regions (see Section 7.2)., We also note
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that the difference limen (or just-noticeable difference) for pitch frequency
is 0.3% to 0.6% for a flat (monotone) pitch contour [22] and about 2% for a
linear (ramp) pitch contour [23]. We reiterate that the presence of the
context included in the foregoing three parts is determined from the reference

pitch data.

Since we considered the use of no weighting or ome or more of the four
weighting methods for each of the three types of errors (VUV, UVV, and gross
pitch errors), we had a total of 125 (5x5x5) possible combinations we
investigated. As error measures, we considered each of the three types of
errors separately, sum of any two types of errors, and sum of all three types
of errors. This led to a total of 215 (3x5 + 3x25 + Ix125) error measures we
investigated. The total of all three types of errors produced, in general,
higher correlation with subjective scores than did the one~at-a-time and the
tvo-at-a-time error measures (see Section 8.2). It is convenient to use a
simple notation to refer to the 125 total error measures. Let us use the
order VUV error, UVV error, and gross pitch error in specifying tie wveights.
Also, let us denote the unweighted case by the letter C (for count); the
energy weighting by the letter E; the duration-based weighting by the letter
D; the pitch frequency and pitch error weighting by the letter F (for

frequency); and the context-dependent weighting by the letter L (for
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& Eﬂ location). Thus, the notation C-C-C refers to the total unweighted error
measure, and the notation EDFL-C-EF refers to the total error measure that
uses all four weighting methods for VUV errors, no weighting for UVV errors,

and energy and pitch—-error weighting for gross pitch errors.

We also implemented the objective measure used in [10]. We refer to this

measure as the TI measure. This measure is a total of weighted VUV errors,

weighted UVV errors, and weighted pitch errors (gross and fine pitch errors
included). All errors are energy weighted using the factor (RMS value/maximum
RMS) discussed above. In additiom, pitch errors are weighted with the factors
[(FT-FR)IPR]2 and FR/500. Voicing errors in a frame at any voicing tramsition
are weighted with a factor F/500 and all other voicing errors are weighted
with a larger factor (1 + F/500), where F=FR for VUV errors and F=FT for UVV
errors. This last-mentioned context-dependent weighting is contrary to our
weighting method, which emphasizes the voicing errors at the unvoiced-voiced

transitions.
8.1.3 Computation of Objective Measures

The procedure we used for computing the large number of objective
measures described above was incorporated as part of the program PEVAL (see

Section 4.2). The procedure is as follows. A frame-by-frame comparison is
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database of interest, at a rate of 50 frames/s. Unprocessed speech waveform
files are used to compute the frame speech energy required for energy

weighting. Reference pitch data is used to locate the voicing transitions and

compute each frame the slope RS and the reliability factor RF as discussed in
Section 7.1; these are required for context-dependent weighting. For each A
frame that contains a pitch or voicing error, a set of weighting factors and

products of these factors for different combinations of the weighting methods oo
are computed. These weights and products of weights are summed over a - 4
database of pitch files, separately for each of the three types of errors

(VUV, UVV, and gross pitch errors), normalized by dividing with the total

number of frames processed for the cases involving no emergy weighting and

(1

1
with the total of the frame energy factors for the cases involving energy - }

weighting, and multiplied with 100 to obtain percentages. These sums are .:f:l:

actually error measures since the unweighted value assigned to an occurrence ~ i
of any error is unity. Composite error measures are then computed by adding - : 1
any two of the VUV, UVV, and gross pitch error measures and by adding all ‘
three. In one session, the user computes the various objective measures for
each of several pitch extractors; the computed objective measure data are all

stored in ome disk file to be used in subsequent correlation study. We

produced two objective measure files, ome for clean speech and one for ABCP
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noise~added speech. Notice that the same objective measure file applies to :f:ﬁ-j;f‘

both LPC and HDV coders, since they use the same pitch files as imput. _;'.'

L?'- N 8.2 Correlation with Subjective Rating

E ‘ To evaluate and choose some good omes from the large number of objective o
é measures we considered, we correlated the data from each objective measure
F against the mean subjective rating scores. We performed the correlation study
E v in each of eight different conditions described below. First, we considered T
o the overall scores for each of the four cases: LPC/Clear, HDV/Clear,

LPC/Noise, and HDV/Noise. The overall subjective scores were obtained by

computing, for each of the five test pitch extractors, the mean of 672 ratings

for the clear condition (48 stimulus sentences x 7 subjects x 2 judgments) and
the mean of 480 ratings for the noise condition (48 stimulus sentences x 5 .
subjects x 2 judgments). The overall objective scores were computed over the sl

48 sentences, once for the clear condition and once for the noise condition.
(Recall that the objective scores are the same for both coders.) We had thus
five objective scores and five subjective scores corresponding to the five
pitch extractors, and we computed the correlation between the two sets of :__‘:’;.l‘

scores. We shall refer to this correlation as the S-item correlation as it

involves five scores. Second, we considered the scores at a more detailed
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level, again for each of the four coder/background cases. We divided the 48
stimulus sentences into eight sets of six sentences each. For each of the
first six sentences in Table 5, the set contained the same sentence spoken by
all six speakers. From the remaining 12 stimulus sentences, we formed two
sets by grouping together phonetically similar sentences. We considered the
evaluation of each pitch extractor over each of the eight six-sentence sets,
which produced 40 items to correlate over. We obtained the subjective scores
by computing the mean of 84 ratings for the clear condition (6 stimulus
sentences x 7 subjects x 2 judgments) and the mean of 60 ratings for the noise
condition (6 stimulus sentences x 5 subjects x 2 judgments). We computed the
objective scores over each of the eight six-sentence sets, once for the clear
condition and once for the noise condition. We shall refer to the correlation
for the second case involving detailed scores as the 40~item correlation. The
40-item correlation should in general be lower than the 5-item correlatiom.
All correlations were computed using PEVAL under a separate command called

CORRELATE.

A good, robust objective measure must produce high correlation under all
eight evaluation conditions described above. In our investigation, we
required high correlation in the clear condition and only a small to moderate

decrease in correlation in the noise conditionm.
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As we mentioned above in Subsection 8.1.2, we used the correlation
results in selecting the specific forms of the weighting factor for each of
the four weighting methods. Before we provide a list of the "best" objective
measures, we present two results that helped us by reducing the number of
objective measures we needed to monitor. First, Table 8 gives the S5-item
correlation values for the four unweighted error measures: percent VUV error,
percent UVV error, percent gross pitch error, and total error, which is the
sum of the first three error measures. Of the first three error measures, the
table shows that VUV error produced the highest correlation value for
LPC/Clear and HDV/Clear. The same result was obtained in the study reported
in [21], which considered only the LPC/Clear condition. For the two noise
conditions, however, the VUV error produced not only the lowest correlation
but also a positive correlation associating a higher error with a higher
subjective rating, which is clearly wrong. This result and many others we
came across in our investigation raise the caution that an objective measure
that works well in the clear may not necessarily work well in the noise.
Table 8 shows another important result that the total error always provided
the highest correlation. Based on this result, we monitored only the total

error in our subsequent work.
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i e d
¢
Error Clear HDV/Clear LPC/Noise HDV/Noisge
Percent VUV i
Error -0.737 -0.720 0.261 0.461 L3
-‘. N r
Percent UVV Lo
Error -0.503 ~0.540 -0.509 -0.662 °
: Pexrcent Gross R
b Pitch Error -0.602 -0.604 -0.612 -0.732 -
Total Error  -0.957 -~0.964 -0.813 -0.761 :
t TABLE 8. S-item correlation results for four basic or unweighted error
- measures.
Form of Emergy
Veighting LPC/Clear HDV/Clear LBC/Roise HDV/Noigse
RMS Value -0.984 -0.990 -0.770 -0.602
RMS Value -
in dB -0.948 -0.952 -0.827 -0.745
RMS/MAX.RMS 0,985 -0.988 -0.759 -0.588 o
T
TABLE 9. S~item correlation results for three forms of energy weighting. ; :
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Second, we compared the three forms of energy weighting: 1) RMS value, 2) RMS
value in dB, and 3) RMS/MAX.RMS (see Subsection 8.1.2). Table 9 gives the 5- - )
item correlation values for the four coder/background conditions. The first
form produced the highest correlation in the clear, and the second form did in

the noise. Consistent with our above-stated objective of achieving high

correlation in the clear, we decided to use the RMS value for energy weighting

in our subsequent work.

In our subsequent work, we monitored the correlation data for 125
objective measures of total error, which were the result of using no weighting
or one or more of the four weighting methods with each of the three (VUV, UVV,

and gross pitch) errors. We also monitored the correlation for the TI

measure., Below, we shall use the simple notation, defined towards the end of - 4

Subsection 8.1.2, to refer to these objective measures.

From the correlation results obtained in the eight different conditions,
we gselected the 12 best objective measures that produced high correlation in
the clesr (0.9 or better) and moderate-to-high correlation (~0.75 or better) tg;ﬁ

in the noise. The average correlation over all eight conditions for each of
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these 12 measures was high and ranged from -0.891 to -0.942. We present the

S5-item correlation results in Table 10 and the 40-item correlation results in

Table 11. We have ordered the 12 measures in terms of the average correlation
over the eight conditions; the average correlations are given in Table 12.
For comparison purposes, we have also given in Tables 10-12 the correlation

results for the unweighted measure C~C-C and the TI measure. We see from

Tables 10-12 that the TI measure performs quite well in the clear but quite
poorly in the noise, producing an average correlation of only -0.561. Even
the unweighted wmeasure seems to be moderately robust under all eight
conditions, with an average correlation of -0.824. The correlation results
given in Tables 10-12 show our 12 best objective measures to be substantially
more robust and yielding substantially higher average correlation as compared
to the two reference measures. From Table 12, we see that as expected, the
averages over the 5-item correlations were all larger than the averages over

the 40-item correlations. If we consider only the overall ratings of the five

pitch extractors, the average (5-item) correlation for the 12 best measures

ranged from -0.906 to -0.982.
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54 Objective
NN No, Measure LPC/Cleer HDV/Clear LPC/Noise HDV/Noise
. = Best Measuxes:
' 1 EDFL~C-EF -0.990  -0.991 ~0.995  -0.953
| 2 EDFL~L-EDFL -0.988  ~0.989 ~0.937 -0.976
£ 3 EFL-DFL-EL -0.986  ~0.995 -0.958  =0.937
4 EDFL~EDL~EFL -0.988  -0.990 ~-0.985 -0.929
5 EFL-DF-EL -0.993 ~0.998 -0.978  -0.916
p ! 6 EFL-EDFL-EL ~0.987  ~0.991 -0.981  =0.907
7 EL-L~EDF -0.994  -0.99 -0.961  ~0.864
. 8 E-C-EDL -0.995  ~0.999 -0.902  -0.826
ll K 9 EFL-EFL-EL -0.988 ~0.990 -0.969  ~0.880
gf_- _ 10 E-EL-EDL -0.984  -0.984 -0.903  -0.805
S 11 E-EDL-EF -0.963  -0.957  -0.911  =0.833
T 12 E-EDL-EDL -0.985 -0.987 -0.855 ~0.795
;"-j' Reference Measures:
13 c-c-¢ -0.961  -0.968  -0.817  ~0.770
5 - 14 TI Measure -0.992  -0.989 -0.185 ~0.015
; .'.-", TABLE 10. S-item correlation results for 12 best measures and 2 reference
h — measures.
S
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v =
Objective .
% No. sur LPC/Clear HDV/Clear LPC/Noise HDV/Noise ERERRIE
I Best sures: —- ‘ ‘
1 EDFL-C~EF -0.929 -0.924 ~0.867 ~0.888 1
. 2 EDFL-L~EDFL -0.919  -0.895  -0.854  -0.899 .
: 3 EFL-DFL-EL -0.893  -0.911  -0.854  =-0.899 B
' 4 EDFL-EDL-EFL -0.909 -0.917 ~0.839 -0.870 ’
5 EFL-DF-EL -0.905  -0.922 -0.842  ~0.862
. 6 EFL-EDFL~EL -0.901 -0.922 ~0.823 -0.849 e o
7 EL-L-EDF -0.932  -0.927 -0.802  -0.812 R
8 E-C~EDL -0.927  -0.932 ~0.846 -0.818
B 9 EFL-EFL-EL -0.909  -0.923 ~0.761  -0.775 -
% 10 E-EL-EDL -0.917  -0.931  -0.838  -0.817 ”
11 E-EDL-EF -0.918  =0.922 -0.814  -0.823
i 12 E-EDL-EDL ' -0.909 -0.928 -0.831 -0.835
Reference Measures: | ]
: 13 c-c-¢ -0.860  -0.843  ~0.721  -0.650 RS
> 14 TI Measure -0.918  -0.878 ~0.332  -0.180 ]
: i
g TABLE 11. 40-item correlation results for 12 best measures and 2 reference -f_-:}
. measures. - LY
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) \ Average over Average over Average over
< Objective S~item 40-item all eight
'- No. Measyre Cor ions Correlations Conditions
I. Best Measures:
1 EDFL-C-EF -0.982 -0.902 ~-0.942
2 EDFL~L-EDFL -0.973 -0.892 ~-0.932
: 3 EFL-DFL-EL ~0.969 -0.889 -0.929
4 EDFL~-EDL-EFL -0.973 -0.884 -0.928
5 EFL-DF-~EL -0.971 -0.883 -0.927
y b 6 EFL-EDFL-EL -0.967 -0.874 -0.920
7 EL-L-EDF -0.954 -0.868 -0.911
8 E-C-EDL . =0.931 -0.881 ~0.906
i L 9 EFL-EFL-EL -0.957 -0.842 -0.899
:’ .. 10 E-EL-EDL -0.919 -0.876 -0.897
P 11 E-EDL-EF -0.916 -0.869 -0.893
' 4 12 E-EDL-EDL -0.906 -0.876 -0.891
; Reference L H
: 13 Cc-C-C -0.879 ~0.769 -0.824
; 14 TI Measure ~0.545 -0.577 -0.561
- TABLE 12. Average correlation results for 12 best measures and 2 reference
wo measures.
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8.3 Recommendations

It is clear from the results given in the last section that the 12 best

measures should be recommended. We address in this section how one may select
a subset of these measures. We discuss below two ways of making this

selection.

First, besides the requirement of high correlation, we must seek
objective measures with meaningful combinations of the weighting methods. We
believe that such measures are likely to continue to be valid for evaluation
situations that are different from the ones used in our investigation (e.g.,
different pitch extractors, different but sufficiently large speech databases,
different unoise conditions, etc.) We believe that an objective measure should
use the same F (pitch frequency) and L (context) weighting for both VUV and
UVV errors, For example, the measure BDFL-CQEF does not satisfy this

criterion, while the measure EFL-EDFL-EL does. Of the 12 best measures given

in Tables 10-12, the measures 3, 6-9 satisfy the above criterion and may

therefore be recommended.
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Second, we consider the ability of the objective measure in rank ordering

the test pitch extractors in a way that approximates the rank ordering
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provided by the mean subjective rating. For this issue, let us use the
overall mean rating. Ome can compute the Spearman”s rank-order correlation
and choose the measures that produce high correlation. But, we did not do
this. For cases where the objective ordering differs from the subjective
ordering, it is desirable to examine how close are the objective scores for
the out-of-order pitch extractors; if the corresponding subjective scores are

also close to each other, we may consider the objective measure still

acceptable. In practice, unless the objective scores for two pitch extractors
are different by more than some amount, we may not want to conclude that one
is better than the other. With this rank-ordering criterion in mind, we
examined in detail, for each of the 12 best neaouiel, the ordering of the five
pitch extractors by the objective scores and the objective scores themselves
and compared them with the corresponding subjective ordering and mean ratings,

for the four cases: LPC/Clear, LPC/Noise, HDV/Clear, and HDV/Noise. The

measure EDFL-C~EF (No. 1 in Tables 10-12) that produced the highest average
correlation also yielded the correct ordering for all but the HDV/Noise cases; N
this is because the objective measure gives only one score for both LPC and '}fé
HDV coders, but the subjective ratings reversed the order of the fourth and ;i_T

fifth pitch extractors betwveen the LPC/Noise and HDV/Noise cases (see Section

P

6.4). Of the 1l remaining measures, one (No. 3 in Tables 10-12) produced the

right ordering for the two clear conditions, and none of the other 10 measures
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produced the right ordering even for one coder/background conditiom. Many of
the measures yielded the least error for JSRU in the clear and the most or the
second most error for AMDFD in the noise, which is not in agreement with the
subjective ordering (JSRU second best in the clear and AMDFD third best in the
noise). However, we found four objective measures that satisfied the
approximate ordering criterion we stated above; these four measures are Nos.
3, 4, 6, and 9 in Tables 10-12. For the best rank-ordering measure stated
above and the four measures just identified, we have given in Tables 13 and 14
the objective scores for the five pitch extractors, respectively, in the clear
and in the noise. For comparison purposes, we have also given in the tables

the data from the unweighted measure (C-C-C) and the TI measure.

From Table 13 and Fig. &4 (see Section 6.4), we see that the first two
measures and the TI measure correctly predicted the subjective ordering of the
five pitch extractors in the clear conditionm. The other four measures
reversed the ordering of the two best pitch extractors, but provided the right
ordering otherwise. Table 14 shows that only the first measure performed
quite well in predicting the subjective ordering in the noise condition. The
next four measures correctly predicted JSRU and ILS as the best and second
best algorithms, but failed in different ways at predicting the subjective
ordering of the other three pitch extractors. The unweighted measure and the

TI measure performed significantly worse.
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Objective
sur AMDFD Gold H=S ILs JSRU
EDFL-EDL-EFL 4.95 19.61 18.97 6.91 4.48
g EFL~EDFL-EL 4.67  15.96 15.22 6.38 3.93
) EFL~EFL-EL 4.53 15.77 15.21 6.35 3.9
& v ¢-C~C 14.22 23.77 23.47 16.55 11.73
[}
TI Measure 3.77 15.16 14.65 7.34 4.39
- TABLE 13. Objective error scores produced by selected 5 best measures and 2
‘ reference measures, for the clear conditiom.
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Objective ',".
Measure AMDFD  Gold H=S ILS  JSRU e
EDFL-C~EF 28.54  32.10 30.01  28.02  16.21 o
EFL~DFL-EL 24.79 23.54 23.63 19.06 11.07
EDFL-EDL-EFL 30.58 31.83 29.57 28.27 16.15 .
EFL-EDFL-EL 21.31 23.06 19.99 18.71 11.04
EFL-EFL-EL 19.79 22.99 18.94 18.53 11.04
c-c-C 42.49  36.54 37.51  38.30  27.45 -
TI Measure 22.90 35.90 17.61 35.57 23.82
TABLE 14. Objective error scores produced by selected 5 best measures and 2 — —
reference measures, for the ABCP noise condition. - A
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- e

9. SUMMARY AND FUTURE RESEARCH

From a review of the available pitch extractors, we chose and implemented '

! . five algorithms. By modifying an existing algorithm, we developed and tested
- an automgtic method for extracting accurate, reference pitch and voicing data
k from the subglottal signal recorded simultaneously with the speech signal ,_' "

using a miniature accelerometer. Since the accelerometer is relatively

G insensitive to acoustic background noise, this method yields accurate pitch

3 R
-y
1

and voicing data even in noise.

For formal subjective evaluation of the chosen pitch extractors, we

h ‘ developed a speech database of 48 sentences that are likely to cause pitch and ——

R

e

voicing errors, which facilitates efficient testing. We generated the test

stimuli using two 2.4 kbit/s coders (LPC and HDV), 6 pitch extractors (5

Ll
)

I " algorithms under test and the reference), and 2 noise conditions (clear and .
- ABCP)., We ran two separate tests, one for each noise condition. Eight
listeners rated the speech quality of the stimuli on an 8-point scale. The
results of the subjective tests showed the reference subglottal-signal-based

pitch extractor to bde the best under all four coder/noise conditions,

NN 3 SAPASSS AN
'

. validating its use as reference in our subsequent objective evaluation work. e

We identified two best pitch extractors under test; one produced the highest S

Ty .-r —
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mean rating in the clear and the other, in ABCP noise.

The objective evaluation method we developed involves comparing, on a
frame-by~frame basis, the test pitch extractor data with the reference pitch
data, computing objective pitch and voicing error measures, and averaging over
the sentences from the speech database. For developing objective measures, we
first conducted a study to assess the perceptual effects of introducing
different types and amounts of pitch and voicing errors into the reference
pitch data. Based on the results of this study, we developed a large number
of objective measures for evaluating pitch extractors, using differeat
combinations of one or more of the following compoments: percentage of the
frames containing voicing errors and gross pitch errors, energy weighting,
weighting based on the duration of the errors, pitch frequency and pitch error
weighting, and context-dependent error measurement. We also implemented two
previously reported objective measures. We found that 12 of our objective
messures provided consistently high correlation with mean subjective ratings
in each of the four cases, two coders each in clear and in ABCP noise. In
contrast, the previously reported measures provided high correlation in the
clear and substantially lower correlation in the noise. Finally, our best
overall objective measure produced excellent correlation, ranging from ~0.953

to -0.995, with the overall mean subjective rating. This measure also
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predicted nearly perfectly the rank ordering of the five test pitch extractors

by the subjective rating, in all coder/moise conditioms.

Finally, we suggest four problems for future work. First, the results
from our detailed examination of the reference FPRDM pitch data givem in
Section 6.2 indicate the potential, through additional work, for substantially
cutting down the 12 to 1.5 voicing errors. We believe that the FPRDM method
can be and should be an excellent research tool in all speech processing work

involving automatic extraction of accurate pitch or voicing or both.

Second, some of the pitch algorithms tested in this research (e.g., JSRU
and FPRDM on speech; see Tables 3 and &) can be improved with the use of a
better voicing algorithm., Additional work may be performed by testing various

ways of combining pitch extractors with voicing decision algorithms.
As a third ares of work, we suggest testing the pitch algorithms in
different acoustic backgrounds involving different noise spectra and different

overall noise levels.

Fourth, the objective pitch evaluation measures developed in this

research may be combined with other objective speech gquality measures for
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-
evaluating the speech quality of pitch-excited speech coders. Previous work qfi

in this area has not included pitch and voicing data as part of the objective - ;ﬁlu
speech quality measures, under the tacit assumption that these data have been

extracted without any error (see (24], for example).
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